

EFL
Enlightenment Foundation Libraries

http://www.enlightenment.org

Tizen native display layer – Architecture & Usage

Carsten Haitzler
Enlightenment project lead & founder

Principal Engineer
raster@rasterman.com

c.haitzler@samsung.com

http://www.enlightenment.org/
mailto:raster@rasterman.com
mailto:c.haitzler@samsung.com

What is EFL?

● A collection of libraries
● Built by the same team working on Enlightenment
● Built for the purpose of making E17 (Enlightenment 0.17)
● Always focused on staying lean and still providing fanciness
● Almost all development focus sunk into EFL vs E17
● Cover a wide range of functionality due to broad needs

● 26% of code for E17 is E, rest is EFL.
● E17+EFL make up only 50% of code in SVN though

EFL's Origins

EFLImlib2Imlib/Fnlib

Enlightenment
(0.1 – 0.16.x)

Enlightenment
(0.17)

1996 2001 2012

Historical Details

● 1996 – Enlightenment development started
● 1997 – Imaging layer split off into Imlib and Fnlib
● 1997 – Imlib adds GTK+/GDK support
● 1999 – Imlib2 combines images, fonts, alpha channels etc.
● 2001 – Evas (using Imlib2 and OpenGL) first appears
● And then EFL really began as more libs were added:

● Ecore, Ebits (later replaced by Edje), Edb (deprecated in favor
of Eet), Eina, Embryo, Efreet, EDbus, Ethumb, Emotion,
Elementary, Epdf, Eeze.

What's inside

● Canvas scene-graph (Evas)
● OpenGL, OpenGL-ES2.0, Software renderer and more

● Core mainloop, connection, input and glue libraries (Ecore)
● Data codec and storage (Eet)
● Bytecode VM (Embryo)
● Pre-made data objects with scripting, animation etc. (Edje)
● Freedesktop.org standards support (Efreet)

What's inside

● Data structure, modules and base (Eina)
● Dbus integration and wrapping (Edbus)
● Asynchronous I/O (Eio) (Currently not in Tizen)

● Video playback glue (Emotion)
● Udev hardware detection (Eeze) (Currently not in Tizen)

● Thumbnailer & cacher (Ethumb)
● Widgets & convenience (Elementary)

On its way

● Javascript runtime environment (Elev8) (Currently not in Tizen)

● Still in alpha, not complete
● Like Node.js, but for UI.

– Both Node.js and Elev8 highly similar structures & design
– Reaching out to Node.js developers (positive response)
– Harmonizing Elev8 vs Node.js libvu

● Object model enhancements (Currently not in Tizen)

● Expanding performance, threading (Currently not in Tizen)

● Decreasing memory footprint & more (Currently not in Tizen)

So why does this matter?

● EFL is the core toolkit being used in Tizen
● EFL is built for performance and low footprint

● Still heavy focus on customization and power

● Tizen is open, just like EFL
● Native apps can use EFL as opposed to shipping their own toolkits

● Smaller footprint for shipping devices
● Continued support

● Provides much of what you need
● It's an open source project, so contributions always welcomed

● API's all in C, thus easily usable from both C and C++

Where does it lurk?

EFL

KERNEL

libpng/jpeg etc.libc etc. X11, OpenGL, etc. D-Bus, Services

Enlightenment
(Window Manager & Compositor)

HTML5 Apps

Browser
And HTML5

Runtime

Native Applications
and Services

EFL

Duplo time!

Elementary

Application, Library, Service

Edje

Ecore

Evas

Eet

Eina

Efreet EDbus

Embryo

EmotionEthumbEezeEio

Core OS (Kernel, libc, other system libraries, OpenGL, D-Bus, X11, services etc.)

(Currently not in Tizen)

Why EFL?

● Why is EFL being used as opposed to GTK+ or Qt or
something else?
● Speed

– Samsung used GTK+, X11 and DirectFB (in combinations) and once
EFL was tried, it soundly beat these hands-down in performance

– Very fast software rendering (for all occasions)
– Solid Accelerated OpenGL and OpenGL-ES2.0 support for many

years
– 60fps+ on common smartphones equaling android with higher

quality

Why EFL?

● Why is EFL being used as opposed to GTK+ or Qt or
something else?
● Memory (Ubuntu 11.04) beyond base X11 “failsafe” session

– Unity – 168Mb
– Enlightenment 0.17 – 65Mb

● Numbers based on “free” minus disk cache and buffers – Base 199Mb

● Both Unity and Enlightenment have roughly similar features
and setup
– Compositor (OpenGL), fullscreen wallpaper, launcher, icons,

filemanager, etc.

How is this relevant?

● Mobile devices ship with limited memory
● 128Mb, 256Mb, maybe 512Mb

● These devices almost never use swap
● Flash has limited writes, so swap can hurt device lifespan

● Lower end devices may not have GPU's
● Require decent software rendering to make up for it

● OpenGL has overhead that may not be worth it for all
situations
● Texture atlases to keep speed, but lose memory & more

Where do I start?

● On Tizen itself, or packages for several distros
● Some distros EFL based
● Source fetch methods

● http://www.enlightenment.org/p.php?p=download
– Build order and package info etc.

● (Build Elementary and E17 last)

● svn co http://svn.enlightenment.org/svn/e/trunk
– Get everything yourself directly

● http://omicron.homeip.net/projects/easy_e17/easy_e17.sh
– Fetch from svn and build, install dependencies

http://www.enlightenment.org/p.php?p=download
http://svn.enlightenment.org/svn/e/trunk
http://omicron.homeip.net/projects/easy_e17/easy_e17.sh

ECORE

Core concepts

● Event driven mainloop
● Rendering (UI)
● Application state management
● Small miscellaneous tasks (non-blocking)

● Support for threaded work
● Similar to OSX and iOS with dispatching (Grand Central Dispatch) as

well as manual dispatch and feedback
● Added thread models with mainloop begin/end blocks and mainloop

call dispatch (from threads).
● More on threading

– http://docs.enlightenment.org/auto/elementary/threading.html

The Mainloop (Ecore)

Z
Z
Z

WAKE UP

PROCESS TIMEOUTS

PROCESS EVENTS

PROCESS JOBS

GO TO SLEEP

SPIN IN
IDLERS

OR EVENT HANDLER

TIMER/ANIMATOR

IDLE EXITER

JOB

IDLE ENTERER

CALLBACK

EVAS RENDERS UPDATES

To keep a smooth UI

● Put I/O work or heavy computation into threads
● Use the constructs provided to make this easy
● Keep state in Mainloop consistent
● Only deliver changes as a whole (UI tracks state)

● (automatic within mainloop)

● Use Animators, not Timers for animation
● Remember that mainloop is for keeping application state

● Blocking it blocks state (and UI) updates

Threading the Mainloop (Ecore Thread)

Mainloop

Thread
Job

Thread
Job

Thread
Job

Thread
Job

Thread
Worker

Thread
Worker

Thread
Worker

Queue

Mainloop adds thread job

Results returned to Mainloop
(result functions run inside Mainloop)

Hello EFL
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {
 elm_exit();
}

static void on_ok(void *data, Evas_Object *obj, void *event_info) {
 elm_exit();
}

int elm_main(int argc, char **argv) {
 Evas_Object *win, *box, *label, *button;

 win = elm_win_util_standard_add("main", "Hello");
 evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

 box = elm_box_add(win);

 label = elm_label_add(win);
 elm_object_text_set(label, "Hello out there world");
 elm_box_pack_end(box, label);
 evas_object_show(label);

 button = elm_button_add(win);
 elm_object_text_set(button, "OK");
 elm_box_pack_end(box, button);
 evas_object_show(button);
 evas_object_smart_callback_add(button, "clicked", on_ok, NULL);

 elm_win_resize_object_add(win, box);
 evas_object_show(box);

 evas_object_show(win);
 elm_run();
}
ELM_MAIN();

Hello EFL
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {
 elm_exit();
}

static void on_ok(void *data, Evas_Object *obj, void *event_info) {
 elm_exit();
}

int elm_main(int argc, char **argv) {
 Evas_Object *win, *box, *label, *button;

 win = elm_win_util_standard_add("main", "Hello");
 evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

 box = elm_box_add(win);

 label = elm_label_add(win);
 elm_object_text_set(label, "Hello out there world");
 elm_box_pack_end(box, label);
 evas_object_show(label);

 button = elm_button_add(win);
 elm_object_text_set(button, "OK");
 elm_box_pack_end(box, button);
 evas_object_show(button);
 evas_object_smart_callback_add(button, "clicked", on_ok, NULL);

 elm_win_resize_object_add(win, box);
 evas_object_show(box);

 evas_object_show(win);
 elm_run();
}
ELM_MAIN();

Hello EFL
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {
 elm_exit();
}

static void on_ok(void *data, Evas_Object *obj, void *event_info) {
 elm_exit();
}

int elm_main(int argc, char **argv) {
 Evas_Object *win, *box, *label, *button;

 win = elm_win_util_standard_add("main", "Hello");
 evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

 box = elm_box_add(win);

 label = elm_label_add(win);
 elm_object_text_set(label, "Hello out there world");
 elm_box_pack_end(box, label);
 evas_object_show(label);

 button = elm_button_add(win);
 elm_object_text_set(button, "OK");
 elm_box_pack_end(box, button);
 evas_object_show(button);
 evas_object_smart_callback_add(button, "clicked", on_ok, NULL);

 elm_win_resize_object_add(win, box);
 evas_object_show(box);

 evas_object_show(win);
 elm_run();
}
ELM_MAIN();

Hello EFL
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {
 elm_exit();
}

static void on_ok(void *data, Evas_Object *obj, void *event_info) {
 elm_exit();
}

int elm_main(int argc, char **argv) {
 Evas_Object *win, *box, *label, *button;

 win = elm_win_util_standard_add("main", "Hello");
 evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

 box = elm_box_add(win);

 label = elm_label_add(win);
 elm_object_text_set(label, "Hello out there world");
 elm_box_pack_end(box, label);
 evas_object_show(label);

 button = elm_button_add(win);
 elm_object_text_set(button, "OK");
 elm_box_pack_end(box, button);
 evas_object_show(button);
 evas_object_smart_callback_add(button, "clicked", on_ok, NULL);

 elm_win_resize_object_add(win, box);
 evas_object_show(box);

 evas_object_show(win);
 elm_run();
}
ELM_MAIN();

Hello EFL
(in C)

$ gcc hello.c -o hello `pkg-config --cflags --libs elementary`
$./hello

Hello EFL
(in Elev8 / Javascript)

var my_window = new elm.window({
 label: "Hello",
 elements: {
 bg: { type: "background", resize: true },
 box: { type: "box",
 resize: true,
 elements: {
 label: { type: "label",
 label: "Hello out there world"
 },
 button: { type: "button",
 label: "OK",
 on_clicked: function(arg) {
 elm.exit();
 }
 }
 }
 }
 }
});

Hello EFL
(in Elev8 / Javascript)

$ elev8 hello.js

Getting fancy
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {
elm_exit();

}

int elm_main(int argc, char **argv) {
Evas_Object *win;

win = elm_win_add(NULL, "main", ELM_WIN_BASIC);
elm_win_title_set(win, "Hello Flip");
evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

evas_object_show(win);
elm_run();

}
ELM_MAIN();

Getting fancy
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {
elm_exit();

}

int elm_main(int argc, char **argv) {
Evas_Object *win, *bg;

win = elm_win_add(NULL, "main", ELM_WIN_BASIC);
elm_win_title_set(win, "Hello Flip");
evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

bg = elm_bg_add(win);
elm_bg_file_set(bg, "plant.jpg", NULL);
elm_win_resize_object_add(win, bg);
evas_object_show(bg);
evas_object_show(win);
elm_run();

}
ELM_MAIN();

Getting fancy
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {
elm_exit();

}

int elm_main(int argc, char **argv) {
Evas_Object *win, *bg, *box, *flip, *button;

win = elm_win_add(NULL, "main", ELM_WIN_BASIC);
elm_win_title_set(win, "Hello Flip");
evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

bg = elm_bg_add(win);
elm_bg_file_set(bg, "plant.jpg", NULL);
elm_win_resize_object_add(win, bg);
evas_object_show(bg);

box = elm_box_add(win);

flip = elm_flip_add(win);
elm_box_pack_end(box, flip);
evas_object_show(flip);

button = elm_button_add(win);
elm_object_text_set(button, "Flip");
elm_box_pack_end(box, button);
evas_object_show(button);
evas_object_smart_callback_add(button, "clicked", on_flip, flip);

elm_win_resize_object_add(win, box);
evas_object_show(box);
evas_object_show(win);
elm_run();

}
ELM_MAIN();

Getting fancy
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {
elm_exit();

}

static void on_flip(void *data, Evas_Object *obj, void *event_info) {
Evas_Object *flip = data;
elm_flip_go(flip, ELM_FLIP_CUBE_UP);

}

int elm_main(int argc, char **argv) {
Evas_Object *win, *bg, *box, *flip, *label, *button;

win = elm_win_add(NULL, "main", ELM_WIN_BASIC);
elm_win_title_set(win, "Hello Flip");
evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

bg = elm_bg_add(win);
elm_bg_file_set(bg, "plant.jpg", NULL);
elm_win_resize_object_add(win, bg);
evas_object_show(bg);

box = elm_box_add(win);

flip = elm_flip_add(win);
elm_box_pack_end(box, flip);
evas_object_show(flip);

label = elm_label_add(win);
elm_object_text_set(label,
 "Hello out there world!
"
 "
"
 "This is a small ditty I wrote,
"
 "On the front of this here note,
"
 "To see what fun there can be,
"
 "Playing with Elementary.
"
 "
"
 "To swoosh, to flip, within this note,
"
 "Is precisely what the programmer wrote,
"
 "For candy of the eye to be seen,
"
 "Compiled to binaries it must have been.");
evas_object_show(label);
elm_flip_content_front_set(flip, label);
button = elm_button_add(win);
elm_object_text_set(button, "Flip");
elm_box_pack_end(box, button);
evas_object_show(button);
evas_object_smart_callback_add(button, "clicked", on_flip, flip);

elm_win_resize_object_add(win, box);
evas_object_show(box);

evas_object_show(win);
elm_run();

}
ELM_MAIN();

Getting fancy
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {
elm_exit();

}

static void on_flip(void *data, Evas_Object *obj, void *event_info) {
Evas_Object *flip = data;
elm_flip_go(flip, ELM_FLIP_CUBE_UP);

}

int elm_main(int argc, char **argv) {
Evas_Object *win, *bg, *box, *flip, *label, *list, *button;

win = elm_win_add(NULL, "main", ELM_WIN_BASIC);
elm_win_title_set(win, "Hello Flip");
evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

bg = elm_bg_add(win);
elm_bg_file_set(bg, "plant.jpg", NULL);
elm_win_resize_object_add(win, bg);
evas_object_show(bg);

box = elm_box_add(win);

flip = elm_flip_add(win);
elm_box_pack_end(box, flip);
evas_object_show(flip);

label = elm_label_add(win);
elm_object_text_set(label,
 "Hello out there world!
"
 "
"
 "This is a small ditty I wrote,
"
 "On the front of this here note,
"
 "To see what fun there can be,
"
 "Playing with Elementary.
"
 "
"
 "To swoosh, to flip, within this note,
"
 "Is precisely what the programmer wrote,
"
 "For candy of the eye to be seen,
"
 "Compiled to binaries it must have been.");
evas_object_show(label);
elm_flip_content_front_set(flip, label);

list = elm_list_add(win);
elm_list_item_append(list, "Eye of newt,", NULL, NULL, NULL, NULL);
elm_list_item_append(list, "And toe of frog,", NULL, NULL, NULL, NULL);
elm_list_item_append(list, "Wool of bat,", NULL, NULL, NULL, NULL);
elm_list_item_append(list, "And tongue of dog,", NULL, NULL, NULL, NULL);
elm_list_item_append(list, "Adder's fork,", NULL, NULL, NULL, NULL);
elm_list_go(list);
evas_object_show(list);
elm_flip_content_back_set(flip, list);
button = elm_button_add(win);
elm_object_text_set(button, "Flip");
elm_box_pack_end(box, button);
evas_object_show(button);
evas_object_smart_callback_add(button, "clicked", on_flip, flip);

elm_win_resize_object_add(win, box);
evas_object_show(box);

evas_object_show(win);
elm_run();

}
ELM_MAIN();

Getting fancy
(in C)

#include <Elementary.h>

static void on_win_del(void *data, Evas_Object *obj, void *event_info) {
elm_exit();

}

static void on_flip(void *data, Evas_Object *obj, void *event_info) {
Evas_Object *flip = data;
elm_flip_go(flip, ELM_FLIP_CUBE_UP);

}

int elm_main(int argc, char **argv) {
Evas_Object *win, *bg, *box, *flip, *label, *list, *button;

win = elm_win_add(NULL, "main", ELM_WIN_BASIC);
elm_win_title_set(win, "Hello Flip");
evas_object_smart_callback_add(win, "delete,request", on_win_del, NULL);

bg = elm_bg_add(win);
elm_bg_file_set(bg, "plant.jpg", NULL);
elm_win_resize_object_add(win, bg);
evas_object_show(bg);

box = elm_box_add(win);

flip = elm_flip_add(win);
elm_box_pack_end(box, flip);
evas_object_show(flip);

label = elm_label_add(win);
elm_object_text_set(label,
 "Hello out there world!
"
 "
"
 "This is a small ditty I wrote,
"
 "On the front of this here note,
"
 "To see what fun there can be,
"
 "Playing with Elementary.
"
 "
"
 "To swoosh, to flip, within this note,
"
 "Is precisely what the programmer wrote,
"
 "For candy of the eye to be seen,
"
 "Compiled to binaries it must have been.");
evas_object_show(label);
elm_flip_content_front_set(flip, label);

list = elm_list_add(win);
elm_list_item_append(list, "Eye of newt,", NULL, NULL, NULL, NULL);
elm_list_item_append(list, "And toe of frog,", NULL, NULL, NULL, NULL);
elm_list_item_append(list, "Wool of bat,", NULL, NULL, NULL, NULL);
elm_list_item_append(list, "And tongue of dog,", NULL, NULL, NULL, NULL);
elm_list_item_append(list, "Adder's fork,", NULL, NULL, NULL, NULL);
elm_list_go(list);
evas_object_show(list);
elm_flip_content_back_set(flip, list);

button = elm_button_add(win);
elm_object_text_set(button, "Flip");
elm_box_pack_end(box, button);
evas_object_show(button);
evas_object_smart_callback_add(button, "clicked", on_flip, flip);

elm_win_resize_object_add(win, box);
evas_object_show(box);

evas_object_show(win);
elm_run();

}
ELM_MAIN();

EVAS

What is a scene graph? (Evas)

● Tracks state of all display objects
● Position, size, visibility, color, properties etc.

● Handles rendering of each object
● Loading fonts, images, rendering glyphs, scaling, fading etc.

● Handles minimizing of rendering
● Only update areas changed
● If changes obscured, reduce to a NOP

● Optimize rendering
● Abstract to OpenGL, software, or anything else

What is a scene graph? (Evas)

● Allows you to build your own composite objects
● Creates parent/child relationship
● Is used throughout EFL to build widgets etc.

● Handles input direction and event callbacks
● Text formatting & layout

What is a scene graph? (Evas)

Text Label Text Label Text Label Text Label Text Label Text Label

Text Label Text Label Text Label

OK

Complex objects out of simple ones

Complex objects out of simple ones

OK

Complex objects out of simple ones

OK

Complex objects out of simple ones

OK

Complex objects out of simple ones

OK

Putting together objects

Canvas core

Abstracting rendering

Hello out there

General Rendering

Software rendering API

Software core

OpenGL Rendering API

OpenGL core

OUTPUT
(screen/window)

Input device events Canvas state changes

Select rendering engine at runtime

Rendering commandImage data, fonts etc.

Automated update handling

Hello out there

Start here

Automated update handling

Hello out there

Next frame is here

Automated update handling

Hello out there

Calculate actual update region deltas (up to each engine to implement)

Automated update handling

Hello out there

Only draw updated regions (up to each engine to implement)

Automated update handling

Hello out there

Result

Multiple output paths

● Pure software
● Universal (works everywhere)
● MMX, SSE, SSE3, NEON ASM (runtime detected)
● High quality scaling (super-sampling + linear-interpolation)
● Caching of scaled image data on the fly
● Output rotation and down-convert

Multiple output paths

● OpenGL/OpenGL-ES2
● Uses texture atlases where possible
● Defers texture upload and removes duplication where it can
● Multi-pipeline out-of-order rendering optimizing
● Batches up as much geometry as it can for best performance
● Specialized shaders for performance
● Pushes all rendering via GL (not just compositing surfaces)

– Text, polygons too
● Tries to remove texture uploads with zero-copy (if possible)

Multiple output paths

● X11 (OpenGL, Xlib & XCB)
● Wayland (OpenGL & SHM)
● Raw Framebuffer
● Memory buffers
● PS3 Native
● SDL (OpenGL)
● Windows (32/64/CE) (GDI & DirectDraw)
● … others too

Input Data

● Images
● CMP, EDB, EET, GIF (animated + still), ICO, JPEG,

PPM/PGM/PBM, PSD, SVG, TGA, TIFF, WBMP, XPM, XCF,
PS, PDF, RAW, MOV/AVI/MPG/etc.

● Fonts
● TTF, OpenType (anything Freetype 2 supports)

● Text
● UTF-8 Unicode
● Complex text formatting (LTR, RTL, Composition)

EDJE

Pre-made objects for designers (Edje)

● Edje allows a designer to store objects in files
● Pre-made layout with rules and reactions to events
● Stored separately to code in binary files for runtime

replacement
● Fast & compact random access designed for realtime use
● All layout, image data, etc. etc. all in 1 file (zero-unpacking)
● Intended for designers & developers to work independently
● Supports scalable and resizeable layouts
● Provides the core ability to re-theme and entire UI or OS

How it works

EdjeEvas

Application

Mainloop

Edje File

Create & control Objects

Get event callbacks

Signal callbacks

Messages

Queries

Signal emits

Messages

Swallows

Controls

Text etc.

Layout rules, parameters & states

Images & fonts

Event reaction rules

Edje

An example
collections {
 group { name: "hello";
 images {
 image: "plant.jpg" LOSSY 80;
 image: "shadow.png" COMP;
 }
 parts {
 part { name: "bg";
 description { state: "default" 0.0;
 aspect: 1.0 1.0; aspect_preference: NONE;
 image.normal: "plant.jpg";
 }
 }
 part { name: "label"; type: TEXT; scale: true;
 description { state: "default" 0.0;
 text {
 font: "Sans"; size: 20;
 text: "Hello World!";
 }
 }
 }
 part { name: "shadow";
 description { state: "default" 0.0;
 image.normal: "shadow.png";
 }
 }
 }
 }
}

Sizing

Scaling

ELEMENTARY

So what is Elementary?

● A widget set built on top of the lower-level EFL layers
● Brings coherent policy and consistency to widgets
● Pre-made common widgets most applications need
● Central theme setup so applications look consistent
● Utilities saving extra footwork by the developer
● Touch friendly design
● Scaling of UI from the get-go
● Also adjusts for input resolution (finger vs mouse etc.)

So what is Elementary?

● It can be seamlessly merged with lower level objects
● Programmer can use Elementary containers or hand-

arrange widgets and control them
● Since all objects can be stacked and layered, so can

elementary widgets
● Widgets can be transformed like any object
● Handles dealing with IME (Virtual keyboard) for you
● Does many other useful things to save you time

So what is Elementary?

● All widgets can and will be rendered with Hardware
(OpenGL) if that is the engine chosen
● This includes all decorations, text etc. not just compositing

● Elementary helps enforce “finger size” so users can
always easily use your application

● Works on both desktop (keyboard & mouse) as well as
touchscreen and multi-touch

Results with Elementary

Results with Elementary

EMOTION

Video & Sound in your world

● Gives you a high level API to include video
● Abstracts to different video decode back-ends
● Optimizes decode via YUV paths or video overlay
● Simple to use

Simple Video

Evas_Object *vid = emotion_object_add(canvas);
emotion_object_init(vid, NULL);
emotion_object_file_set(vid, "file.avi");
evas_object_resize(vid, 640, 360);
emotion_object_play_set(vid, EINA_TRUE);
evas_object_show(vid);

How it works

Decoder
thread

Thread

Thread Thread

Mainloop

Evas Emotion
Core

Media file or stream

Media Codec (Gstreamer/Xine/Generic)

Application

Emotion

EET

Garbage in, garbage out

Eet
(Library)

Application
(RAM)

Binary
Data

(File or buffer)

Eet
(Cmdline)

Text file
Stdout

0100011101010110101

group “Data” struct {
 value “name” string: “Bob”;
...

struct Data {
 const char *name;
...

XML/JSON … for C programmers

● Parsing text is painful
● Parsing correctly without bugs, overflows is harder
● Most programmers hate parsing

● XML, JSON etc. optimized for editing, not runtime
● Programs read/write data 1000x more than humans

● So optimize for the common use case, not the uncommon one

● Make it as easy 1-liners for C code to load or save data
● Edje, Enlightenment config, Elementary config built on EET

Flexible, portable and robust

● Allows you to store data in a file (key/value pair)
● Random access read optimized
● Data can be any binary, image, string or struct encoded
● Compresses separate keys (like zip)

● Allows you to en/decode structs to buffers (for network)
● Provides a protocol buffer handler for decodes
● Files and data all platform agnostic (portable)
● Structs encoded with nested key & types for robustness

Define your data structure

typedef struct {
 const char *name;
 int age;
 const char *address;
 const char *phone;
} Data;

Eet_Data_Descriptor_Class dc;
Eet_Data_Descriptor *d;

EET_EINA_FILE_DATA_DESCRIPTOR_CLASS_SET(&dc, Data);
d = eet_data_descriptor_file_new(&dc);
EET_DATA_DESCRIPTOR_ADD_BASIC(d, Data, "name", name, EET_T_STRING);
EET_DATA_DESCRIPTOR_ADD_BASIC(d, Data, "age", age, EET_T_INT);
EET_DATA_DESCRIPTOR_ADD_BASIC(d, Data, "address", address, EET_T_STRING);
EET_DATA_DESCRIPTOR_ADD_BASIC(d, Data, "phone", phone, EET_T_STRING);

Declare and save it

Eet_File *ef;

Data data = {
 .name = "Bob the blob",
 .age = 7,
 .address = "7 Blob ave.",
 .phone = "+82 10 123 4567"
};

ef = eet_open("data.eet", EET_FILE_MODE_WRITE);
eet_data_write(ef, d, "data", &data, EINA_TRUE);
eet_close(ef);

Declare and save it

Data *data2;
ef = eet_open("data.eet", EET_FILE_MODE_READ);
data2 = eet_data_read(ef, d, "data");
eet_close(ef);

For debugging, decode to text

$ eet -d data.eet data
group "Data" struct {
 value "name" string: "Bob the blob";
 value "age" int: 7;
 value "address" string: "7 Blob ave.";
 value "phone" string: "+82 10 123 4567";
}

And encode + compress from text

$ cat data.txt
group "Data" struct {
 value "name" string: "Bob the blob";
 value "age" int: 7;
 value "address" string: "7 Blob ave.";
 value "phone" string: "+82 10 123 4567";
}
$ eet -e data.eet data data.txt 1

EDBUS EFREET EINA
ETHUMB EEZE EMBRYO

EIO ...

And the saga continues

● More EFL libraries with no time to mention them
● Expanding libs and scope on a daily basis

Questions, Answers & Flaming

Enlightenment Foundation Libraries
http://www.enlightenment.org

Carsten Haitzler
Enlightenment project lead & founder

Principal Engineer
raster@rasterman.com

c.haitzler@samsung.com

http://www.enlightenment.org/
mailto:raster@rasterman.com
mailto:c.haitzler@samsung.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

