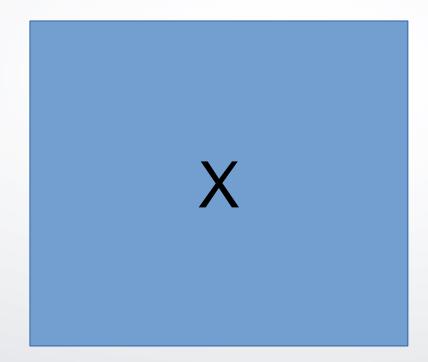
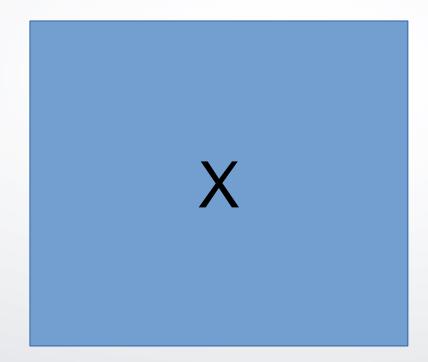
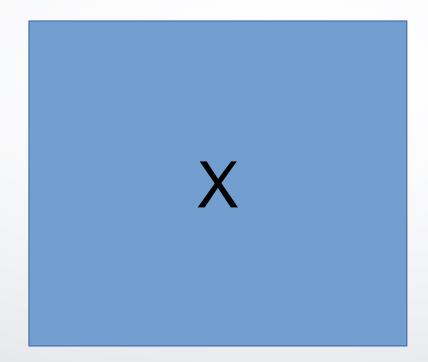

Utilizing Wayland to Improve Performance on Tizen 运用Wayland提升在Tizen平台的表现

Derek Foreman / Christopher Michael Samsung


Х Wayland (and Weston) Under the hood differences EFL on X EFL on Wayland **Enlightenment: X vs Wayland**


Missing features:


Missing features: Compositing


Missing features: Compositing 3D Graphics

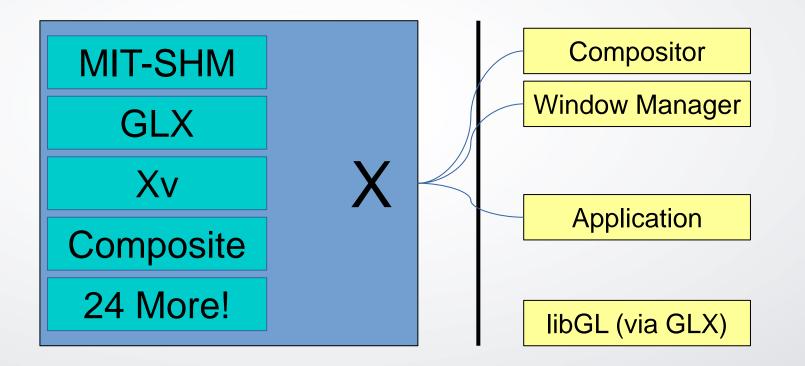
Missing features: Compositing 3D Graphics Video

Missing features: Compositing 3D Graphics Video Moving windows around

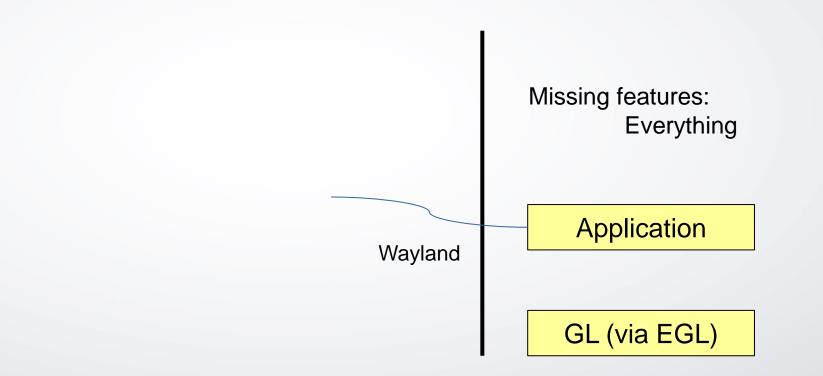
X – with Extensions

Missing features: Compositing 3D Graphics Video Moving windows around

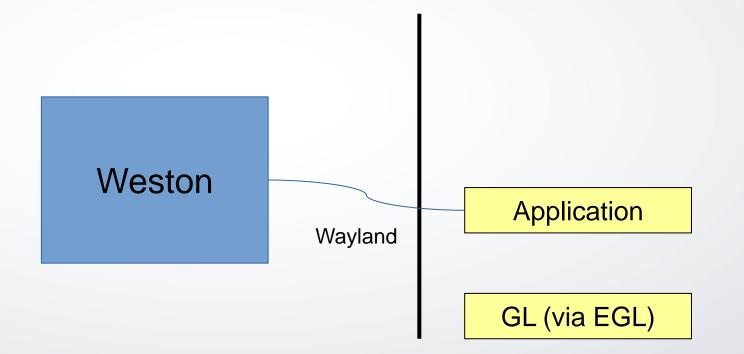
X – with Extensions and Support


Missing features: Compositing 3D Graphics Video Moving windows around

libGL (via GLX)



X – with Extensions and Support and Clients



Wayland and Weston

X X Server Talks to hardware Does rendering Sends events

Х Window Manager Moves windows Handles some state Does rendering X Server Talks to hardware

Talks to hardware Does rendering Sends events

Х Compositor Ensures tear free display Wobbly Windows **Does rendering** Window Manager

Moves windows Handles some state Does rendering

X Server

Talks to hardware

X Compositor *

Ensures tear free display Wobbly Windows Does rendering

Window Manager *

Moves windows Handles some state Does rendering

X Server

Talks to hardware Does rendering Sends events

* May or may not be the same program

X X Server Window Manager Compositor Wayland Compositor

X X Server Window Manager Compositor Wayland Compositor (Does all that stuff)

Under the Hood: Input

X X Server Window Manager Compositor Wayland Compositor

Under X, compositor not involved with input

Under the Hood: Input

Benefits to Tizen:

Compositor puts windows anywhere any orientation input works

Under the Hood: Wayland multi-seat

Collection of input devices: Keyboard Mouse Touch

Under the Hood: Wayland multi-seat

Collection of input devices: Keyboard Mouse Touch

Associated state: Cut and paste Focus Interactive moves and resizes

Under the Hood: Wayland multi-seat

Benefits to Tizen:

Effective sharing of displays New collaborative possibilities

X

Rectangles Lines Arcs Filled Polygons **Filled Arcs** Fonts Image buffers

Wayland Image buffers

Х

Junk Image buffers

Wayland Image buffers

Benefits to Tizen:

Less completely useless code Saves storage space and memory

Client draws stuff Client sends buffer X server does stuff X server alerts compositor Compositor renders

Wayland

Client draws stuff Client commits buffer handle Compositor renders Compositor releases buffers

Client draws stuff Client sends buffer X server does stuff X server alerts compositor Compositor renders Wayland Client draws stuff Client commits buffer handle Compositor renders Compositor releases buffers

X server is single threaded

Client draws stuff Client sends buffer X server does stuff X server alerts compositor Compositor renders

Wayland

Client draws stuff Client commits buffer handle Compositor renders Compositor releases buffers

X server is single threaded Handles client storage

Client draws stuff Client sends buffer X server does stuff X server alerts compositor Compositor renders

Wayland

Client draws stuff Client commits buffer handle Compositor renders Compositor releases buffers

Using poorly synchronized client data

Client draws stuff Client sends buffer X server does stuff X server alerts compositor Compositor renders

Wayland

Client draws stuff Client commits buffer handle Compositor renders Compositor releases buffers

Using poorly synchronized client data Tear-free display possible... sometimes

Benefits to Tizen:

"Every frame is perfect" Easier benchmarking and profiling Lower impact from a bad application

Under the Hood: Wayland buffer properties

Buffer scale Integer multiple Compensates for display DPI difference

Under the Hood: Wayland buffer properties

Buffer scale Integer multiple Compensates for display DPI difference Transform 90 degree rotations Application can render in display orientation

Under the Hood: Buffer Properties

Benefits to Tizen:

Matching transforms may save copy Scale allows for DPI awareness

Under the Hood: Buffer Properties

Benefits to Tizen:

Matching transforms may save copy Scale allows for DPI awareness

Less cpu usage, better images

Wayland provides a frame callback to clients Means "commit now to hit vblank" Doesn't happen for hidden apps Or sleeping displays

Under the Hood: Frame callbacks

Benefits to Tizen:

Reliable timing mechanism Simple, low latency

Under the Hood: Frame callbacks

Benefits to Tizen:

Reliable timing mechanism Simple, low latency

Smooth and responsive animations

Х

Xv OpenGL Image Alpha Hole

Wayland Buffers (fourcc)

Х

Xv OpenGL Image Alpha Hole

"Descriptive, not prescriptive"

Wayland

Buffers (fourcc)

Benefits to Tizen:

Compositor can leverage hardware planes

Less cpu usage Better quality video Longer battery life

Х

Xv OpenGL Image Alpha Hole Wayland Buffers (fourcc) DMA-Buf (soon)

Х

Xv OpenGL Image Alpha Hole Wayland Buffers (fourcc) DMA-Buf (soon)

Zero copy!

X Wayland Window reparenting Subsurfaces

X Wayland Window reparenting Subsurfaces Parent moves are atomic

Window reparenting Parent moves are atomic Moving children isn't

Wayland Subsurfaces Double buffered state Atomic via parent commit

Window reparenting Parent moves are atomic Moving children isn't

Wayland Subsurfaces Double buffered state Atomic via parent commit

Scroll a browser window with lots of video elements...

Benefits to Tizen:

Coherent motion of complicated layouts Again, "Every frame is perfect"

Under the Hood: Wayland security model

Applications have:

No control over own window position No access to other client's buffers No unfiltered access to input

Under the Hood: Wayland security model

Applications have:

No control over own window position No focus stealing

No access to other client's buffers

No color picker

No unfiltered access to input

Under the Hood: Wayland security model

Benefits to Tizen:

Better protection from malicious software

Under the Hood: Wayland protocol extensions

Easy to add private extensions

Easy to add private extensions Official protocol developed as Weston extensions

Easy to add private extensions Gaussian blur? Window orientation hints?

Under the Hood: Wayland protocol extensions

Benefits to Tizen:

Eye candy Rapid innovation

KMS works? Weston works.

KMS works? Weston works.

Don't have to write Xv driver!

KMS works? Weston works.*

*(GL has some additional requirements)

Under the Hood: Portability

Benefits to Tizen:

Quick bring-up on new platforms Easy adoption

See Mauro Chehab's talk "Bringing Tizen to a Raspberry PI 2 Near You!"

Wayland and X share approximately 0% common API

Wayland and X share approximately 0% common API

Rewrite all your applications?

Wayland and X share approximately 0% common API

Rewrite all your applications?

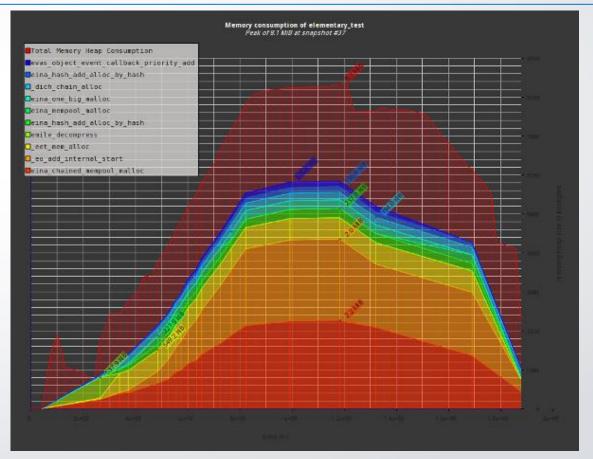
Just kidding! Use EFL.

Data structures (lists, hash tables, etc) Main loop event, I/O, timing core Event queue and call handling Canvas scene graph and rendering Widgets/controls (buttons, sliders, etc) Input method framework Video & audio codec playback IPC, D-Bus, network connectivity

Startup time "time elementary_test": Real: 0m1.645s User: 0m0.683s System: 0m0.017s Memory Usage: 29.8 Mb

EFL Applications on X (cont)

Elementary Test Peak memory: 9.1 MB



Startup time "time elementary_test": Real: 0m1.227s User: 0m0.420s System: 0m0.003s Memory Usage: 18.2 Mb

EFL Applications on Wayland (cont)

Elementary Test Peak memory: 8.1 MB

Utilizing Wayland: Decreased Startup Time: 0.418s average per application Decreased Memory Usage: 11.6 Mb average per application Similar functionality

Startup time not measured **Enlightenment Memory Usage:** In X11: 103.5 Mb X Server: 62 Mb Window Manager: 41.5 Mb Wayland: 54.9 Mb Average Memory Savings: 48.6 Mb Similar functionality

