IoTivity – Connecting Things with IoT Ashok Subash

Samsung Electronics

Agenda

- □ Overview of IoT, OIC & IoTivity
- IoT Stack, Topologies & Protocol
- IoTivity Architecture
- Programming IoTivity Core APIs
- Programming IoTivity Service APIs
- □ Summary

Internet of Things – What is it?

The Internet of Things is the network of physical objects that contains embedded technology to communicate and sense or interact with the objects' internal state or the external environment.* Smart Energy Vehicle, Asset, Person, Agriculture Consumption Pet Monitoring & Controlling Security & Surveillance Internet of Things M2M & Wireless Building Sensor Network Management **Telemedicine &** Wearables & Smart Home Healthcare Things & Cities

- H/W Miniaturization & Lower BOM Cost
- Advancements in Sensor Technology
- Low Power Connectivity Technologies
- IP as key Interoperability Protocol
- Devices ability to run on battery for longer duration (> 10 years)

What's hindering IoT?

- Non IP based standards technology resulting in limited Interoperability
- Proprietary Protocols & Technologies
- Licensing issues
- Companies creating "Closed Ecosystem" (Zero or limited Interoperability with other Vendor devices)
- Low adoption of Open Standards by various Industry Consortiums
- Security & Privacy concerns
- Dilemma in "Ownership" of Data from variety of IoT devices
- Lack of Strong Certification for ensuring Protocol & Application Profile
 Interoperability

Need Standards & Reference Implementation which cater to these issues

OIC & IoTivity

- Open Interconnect Consortium (OIC)
 - Founded by Leading Technology Companies including Cisco, GE, Intel,MediaTek & Samsung
 - Defines standards for connectivity requirements
 - Ensures interoperability of billions of Internet of Things (IoT) devices.
- IoTivity
 - An open source software framework implementing OIC Standards
 - Ensures seamless device-to-device connectivity to address the emerging needs of the Internet of Things.

Key Focus of OIC

- OIC Standards addresses multiple vertical domains including Home Automation, Automotive, Enterprise, HealthCare, Industrial scenarios
- Initial focus on Smart Home & Office solutions
- Adopt Open Standards like IETF when applicable & standardize on areas, not addressed

http://openinterconnect.org/

Key Focus of IoTivity

- Open Source Framework implementing OIC Standards
- Licensed under Apache License Version 2.0
- Available on TIZEN, Android, Arduino, Linux(Ubuntu) Platforms
- Provide APIs at 2 Levels
 - ✓ IoTivity Base
 - ✓ IoTivity Services

https://www.iotivity.org

TIZEN based IoT EcoSystem

IoT Stack, Topologies & Protocol

IoT Technology Stack – End to End - Executive View*

IoT Technology Stack – Technical View

IoT Profiles

- Common Solution
- Established Protocols
- Security & Identity
- Standardized Profiles
- ✤ Interoperability
- Innovation Opportunities
- Necessary connectivity

OIC - Topologies

OIC Intermedary

Concept of Resource & RESTful Architecture

- Client-Server
- Stateless
- Cache
- Uniform Interface
- Layered System

Resource: Any information that can be named e.g. Document, Image, a collection of other resources, non-virtual objects (Things)

Constrained Application Protocol (CoAP)

Constrained Environments – What is it?

- Limitations on Code Size (ROM/Flash)
- Size of State & Buffers (RAM)
- Processing Power (CPU)
- Power Consumption
- User Interface & Accessibility in deployment

- Low achievable bitrate/throughput
- High packet loss & high variability of packet loss (delivery rate)
- Highly asymmetric link characteristics
- Severe penalties for using larger packets
- Limits on reachability over time
- Lack of advanced services such as IP multicast

Constrained Nodes

Constrained Networks

IoTivity Architecture

IoTivity – High Level Architecture

Functionality	Description
Discovery	IoTivity discovery supports multiple discovery mechanisms for devices and resources in proximity and remotely
Data Transmission	IoTivity data transmission supports information exchange and control based on a messaging and streaming model
Data Management	IoTivity data management supports the collection, storage and analysis of data from various resources.
Device Management	IoTivity device management supports configuration, provisioning and diagnostics of devices.

IoTivity Module View

Programming IoTivity Core APIs

Steps involved in using IoTivity Core API

- Registering a Resource
- Finding a Resource
- Querying a Resource State
- Setting a Resource State
- Observing Resource State

Registering a Resource – Call Flow

Registering a Resource – Sequence Diagram

Finding a Resource – System Sequence Diagram

Finding a Resource – Sequence Diagram

Querying Resource State [GET]

Setting a Resource State – Sequence Diagram

Observing Resource State

Programming IoTivity Service APIs

IoTivity Core & Primitive Services Update

32

Things Manager

Group Management

- ✓ Find candidate devices to form a group
- ✓ Create a group of found devices
- ✓ Create a group action for the group
- ✓ Execute the group action

Things Manager – Configuration & Diagnostics

Things Configuration

- Server Side Bootstrapping requisite information from a bootstrap server to access other IoT services
- Client Side Getting/Updating system configuration parameters from/to multiple remote things

Things Diagnostics

- ✓ Factory reset to restore all configuration parameters to default one
- ✓ Reboot to request a system rebooting

Notification Manager

- Service on Unconstrained device host resources for other Lite/Thin devices
- Hosting device mirrors resources from other Lite devices by Observing the pre sence & changes in other sources

Notification Manager – System Sequence Diagram

Resource Encapsulation

♦ Maintains last information of remote resource
 ♦ Data centric APIs (send/receive message → getter/setter, data cache)

- Provide "data centric" API for users to set/create attributes of a resource server
- Notification for observers
- Developer does not need to deal with low-level details of CoAP communication
- Resources are defined based on properties & developer has to provide getter/setter methods

- Provides presence check for resource of interest
- Consistent reachability management for the resources of interest(resource duplication detection and rediscover when temporally unreachable)

- Stores and updates latest resource data from remote resource
- Provides "data centric" interfaces (changes from messaging API to data getter-like interface) to resource client users

Resource Container

• Feature

- Integrates non-OIC resources into the OIC ecosystem
- Handles dynamic loading of resource bundles and dynamic creation of resources
- Supports C++ .so files and Java .jar files
- Common configuration for bundles and configured resources

Resource Container Interaction Flow

OIC & IoTivity – Road Ahead

IoTivity 0.9.0 (Dec 2014)

IoTivity 0.9.2 (August 2015)

IoTivity 1.0 (October 2015)

- Device & Resource
 Discovery IPv4
- OIC Resource Model
- ID/Addressing
- Messaging (CoAP)
- Payload encoding JSON

- Initial IPv6 Support
- BLE Support
- Initial support for Remote Access
- Client-driven credential & ACL Provisioning
- Subject-based Access Control
- Resource Encapsulation
- Payload encoding CBOR

- Multi-Phy Easy Setup
- Cloud Data Interface (CoAP over TCP)
- Resource Directory
- Simulator
- Security Updates
- Block wise Transfer
- Multi-Hop Routing Manager

OIC & IoTivity – Road Ahead

Feature	Description
Multi-Phy Easy Setup	 Connect Out-of-box device without UI onto network & provisioning
Data Interface to Cloud	 Actuation of devices from Cloud Apps, Collection of Sensor Data in Cloud
Resource Directory	 Constrained device that needs to sleep and cannot respond to multicast discovery queries Power constrained device that cannot keep responding to multicast queries
Simulator	 Developers can test implementations without having real hardware Manufactures can provide reference profiles using simulator Enables users/developers to test the functionality of the device/profile first before purchasing the real device Easy for manufacturers to test the profiles with the test suite before releasing the profiles.

OIC & IoTivity – Road Ahead

Feature	Description
Security Updates	 Filter Resource requests Access control of resources Secure Transmission of data across variety of IoT devices Certificate based Key Mgmt
Blockwise Transfer	Send/Receive of Larger data over IoTivity Stack
Multi Hop Routing Manager	Routing of packets across variety of connectivities
AV Streaming	Audio Video Streaming
IPv6 & 6LowPAN support	 Supporting IPv6 and 6LoWPAN as part of IoTivity Connectivity Abstraction

Summary

- ✤ IoT Landscape, Roles of OIC & IoTivity
- Understanding the big picture in IoT including various topologies
- Architectural Principles & Key Protocols adopted by OIC & IoTivity
- High Level Architecture of IoTivity Stack & types of Deployment
- Programming using IoTivity Base APIs
- Programming using IoTivity Service APIs
- Ongoing & Future work

