

IoTivity – Connecting Things in IoT

Ashok Subash

Agenda

- Overview of IoT, OIC & IoTivity
- IoT Stack, Topologies & Protocol
- IoTivity Architecture
- Programming IoTivity Core APIs
- Programming IoTivity Service APIs

In A it At in a

Demo

Overview

4

Internet of Things – What is it?

The Internet of Things is the network of physical objects that contains embedded technology to communicate and sense or interact with the objects' internal state or the external environment.* Smart Energy Vehicle, Asset, Person, Agriculture Consumption Pet Monitoring & Controlling Security & Surveillance Internet of Things M2M & Wireless Building Sensor Network Management **Telemedicine &** Wearables & Smart Home Healthcare Things & Cities TIZEN 🎳 *Gartner, July 2014 1.1.1

What is making IoT possible?

- H/W Miniaturization & Lower BOM Cost
- Advancements in Sensor Technology
- Low Power Connectivity Technologies
- IP as key Interoperability Protocol
- Devices ability to run on battery for longer duration (> 5 years)

Tran i Minio

What is hindering IoT?

- Non IP based standards technology resulting in limited Interoperability
- Proprietary Protocols & Technologies
- Licensing issues
- Companies creating "Closed Ecosystem" (Zero or limited Interoperability with other Vendor devices)
- Low adoption of Open Standards by various Industry Consortiums
- Security & Privacy concerns
- Dilemma in "Ownership" of Data from variety of IoT devices

Lack of Strong Certification for ensuring Protocol & Application Profile
Interoperability

Need Standards & Reference Implementation which cater to these issues

OIC & IoTivity

- Open Interconnect Consortium (OIC)
 - Founded by Leading Technology Companies including Cisco, GE, Intel,, MediaTek & Samsung
 - Defines standards for connectivity requirements
 - Ensures interoperability of billions of Internet of Things (IoT) devices.
- IoTivity
 - An open source software framework implementing OIC Standards
 - Ensures seamless device-to-device connectivity to address the emerging needs of the Internet of Things.

Key Focus of OIC

- OIC Standards addresses multiple vertical domains including Home Automation, Automotive, Enterprise, HealthCare, Industrial scenarios
- Initial focus on Smart Home & Office solutions
- Adopt Open Standards like IETF when applicable & standardize on areas, not addressed

http://openinterconnect.org/

Key Focus of IoTivity

Open Source Framework implementing OIC Standards

Pro A E Mario

- Licensed under Apache License Version 2.0
- Available on TIZEN, Android, Arduino, Linux(Ubuntu) Platforms
- Provide APIs at 2 Levels
 - IoTivity Base
 - IoTivity Services

TIZEN IoT Ecosystem

IoT Stack, Topologies & Protocol

IoT Technology Stack – End to End - Executive View*

*Harvard Business Review – Nov 2014

IoT Technology Stack – Technical View

IoT Profiles

- Common Solution
- Established Protocols
- Security & Identity
- Standardized Profiles
- Interoperability
- Innovation Opportunities
- Necessary connectivity

OIC – Topologies

OIC Client

Concept of Resource & RESTful Architecture

- Client-Server
- Stateless
- Cache
- Uniform Interface
- Layered System

Resource: Any information that can be named

e.g. Document, Image, a collection of other resources, non-virtual objects (Things)

TAA EPATINO

Constrained Application Protocol (CoAP)

Constrained Environments – What is it?

- Limitations on Code Size (ROM/Flash)
- Size of State & Buffers (RAM)
- Processing Power (CPU)
- Power Consumption
- User Interface & Accessibility in deployment

Constrained Nodes

- Low achievable bitrate/throughput
- High packet loss & high variability of packet loss (delivery rate)
- Highly asymmetric link characteristics
- Severe penalties for using larger packets
- Limits on reachability over time
- Lack of advanced services such as IP multicast

Constrained Networks

17

IoTivity Architecture

IoTivity – High Level Architecture

IoTivity Framework – Key Functionality

A Stando

Functionality	Description
Discovery	IoTivity discovery supports multiple discovery mechanisms for devices and resources in proximity and remotely
Data Transmission	IoTivity data transmission supports information exchange and control based on a messaging and streaming model
Data Management	IoTivity data management supports the collection, storage and analysis of data from various resources.
Device Management	IoTivity device management supports configuration, provisioning and diagnostics of devices.

TIZE

IoTivity Module View

Programming IoTivity Core APIs

Steps involved in using IoTivity Core API

- **Registering a Resource**
- Finding a Resource
- Querying a Resource State
- Setting a Resource State
- **Observing Resource State**

Registering a Resource – Call Flow

Registering a Resource – Sequence Diagram

Finding a Resource – Call Flow

Finding a Resource – System Sequence Diagram

Finding a Resource – Sequence Diagram

Querying Resource State [GET]

Setting a Resource State – Sequence Diagram

Observing Resource State

Programming IoTivity Service APIs

IoTivity Services

- Provide common set of functionalities to app development
- Provide easy, scalable access to applications & resources

IoTivity Service	Description
Things Manager	Group Creation & Management
Soft Sensor Manager	Sensor Data Collection, Aggregation & Fusion
Notification Manager	Provides resource hosting function
Protocol Plugin Manager	Communication with non IoTivity devices

Things Manager

Group Management

- ✓ Find candidate devices to form a group
- ✓ Create a group of found devices
- ✓ Create a group action for the group
- ✓ Execute the group action

Group

Air conditioner

LED Bulb

25 C

Thermostat

Things Manager – Configuration & Diagnostics

Things Configuration

 Server Side - Bootstrapping requisite information from a bootstrap server to access other IoT services

 Client Side – Getting/Updating system configuration parameters from/to multiple remote things

Things Diagnostics

- Factory reset to restore all configuration parameters to default one
- Reboot to request a system rebooting

A A BIRLA A DE ATA A DE

Soft Sensor Manager

- Helps in observing changes to Physical Sensors
- Allows developers to create Soft Sensor
- Utilizes data from multiple physical sensors to make sense of data from end user perspective. E.g. DiscomfortIndex

Calculate "Discomfort Index"

Soft Sensor Manager – SDK Class Diagram

Protocol Plugin Manager

- Allows OIC compliant Applications to communicate with non OIC device protocols
- Uses Plugin Manager APIs to find, start, stop plugins
- Uses IoTivity APIs to find and operate • on resources similar to interaction with **OIC** device

Protocol Plugin Manager – Overall Flow

Notification Manager

- Service on Unconstrained device host resources for other Lite/Thin devices
- Hosting device mirrors resources from other Lite devices by Observing the presence & changes in other sources

A A STANDA DE ANTANA

Notification Manager – System Sequence Diagram

41

OIC & IoTivity – Road Ahead

Feature	Description
IoTivity Security	 Filter Resource requests Access control of resources Secure Transmission of data across variety of IoT devices
Device Onboarding & Provisioning	 Connect Out-of-box device without UI onto network & provisioning
IPv6 & 6LowPAN support	 Supporting IPv6 and 6LoWPAN as part of IoTivity Connectivity Abstraction
AV Streaming	Audio Video Streaming
Blockwise Transfer	Send/Receive of Larger data over IoTivity Stack
Routing through Heterogeneous transports	Routing of packets across variety of connectivities
Data Interface to Cloud	 Actuation of devices from Cloud Apps, Collection of Sensor Data in Cloud

Summary

- ✤ IoT Landscape, Roles of OIC & IoTivity
- Understanding the big picture in IoT including various topologies
- Architectural Principles & Key Protocols adopted by OIC & IoTivity
- High Level Architecture of IoTivity Stack & types of Deployment

Tran i Mario

- Programming using IoTivity Base APIs
- Programming using IoTivity Service APIs
- Orgoing & Future work

Usecase Description

- As, Bob's car approaches home, proximity sensor sense his presence
 & garage door opens automatically
- As Bob approaches main door, it gets unlocked after exchanging appropriate credentials
- Meanwhile Bob's Z1 phone connects with home gateway and turns on group of devices like light and fan based on his preset preference
- ✤ Based on increase in temperature, the fan in room is started

Stor i Mario

Same scenario is executed with another group of devices for another user , with their preferences

Use Case Pictorially!

Demo Setup

Demo

4

Thank you

4

