
Under The Hood:

Performance Tuning With

Tizen

Ravi Sankar Guntur

2

• How to write a Tizen App

• Tools already available in IDE v2.3

• Dynamic Analyzer

• Valgrind

3

What’s NEXT?

• Want to optimize my application

• App stands out among crowd

• Better rating!

• What's in Tizen 2.4

• Platform

• Tools

4

What would you get from this talk?

• How to profile & analyze data

• Under the hood optimizations

That's Talk Outline

Profile Your App
Premature optimization is the root of all evil - D.Knuth

6

Tizen Trace

Host

Requirements:

• Python 2.7.x

• Google

Chrome

7

Inserting App Trace Points

8

Trace Live Demo

1. Application Launch Time

2. App Freeze Scenario

3. Frame Per Second

Demo

9

Quick Recap – Tizen Trace

• Gives system wide summary in timeline

• Can select trace tags

• Can insert app specific trace points

• Very little overhead

• Trace is analyzed using Chrome

Under The Hood:
Virtue of being ‘OS Of Everything’

11

Benchmark Devices

 Z1 Other 1 Other 2 Other 3

OS Tizen 2.3 Android 4.2.2 Android 4.2.2 Android One

CPU
1.2GHz X 2

ARM Cortex-A7
1.2GHz X 4

ARM Cortex-A7
1.3GHz X 2

ARM Cortex-A7
1.3GHz X 4

ARM Cortex-A7

GPU Mali 400MP Mali 400MP Mali 400MP Mali 400MP

RAM 768MB 768MB 512MB 1024MB

Storage 4GB 4GB 4GB 4GB

LCD
4.0" TFT

WVGA

(480X800)

4.5" TFT LCD

WVGA

(480X800)

4.0" TFT

WVGA

(480X800)

4.5" IPS

FWVGA

(480X854)

Battery 1,500mAh 2,000mAh 1,500mAh 1,700mAh

Camera 3MP, VGA 5MP, VGA 2MP, VGA 5MP, 2MP

12

Faster Boot Time

• Effective Multi Core Utilization

• Better Service Dependency Handling

• On Demand Launch of Services

Boot Time

(sec)

Z1 Other1 Other 2

Normal 17.87 24.54 26.69

13

Faster App Launch Times

• Library preload

• Process pool

14

Benchmark Results – App Launch Times

App Open Times

(sec)
Z1 Other 1 Other 2 Other 3

Calculator 0.80 0.72 0.68 0.65

Camera 1.55 2.44 2.11 2.08

Clock 0.99 0.96 1.17 0.90

Contacts 1.39 1.73 0.78 2.71

Phone 1.02 1.72 1.56 3.61

Gallery 1.08 1.08 1.82 2.00

Message 1.22 1.26 0.81 1.25

Music 1.02 1.99 1.75 1.38

Calendar 1.19 0.86 0.8 0.70

Setting 0.98 0.93 0.89 0.83

Average 1.11 1.32 1.22 1.55

15

Tizen Package
Version X

Size

Version X+1

Size

Delta

Size

quiztime 215.5 KB 218.3 KB 19.8 KB

speedmeter 52.6 KB 61.6 KB 21.7 KB

applocker 976.2 KB 1.1 MB 131.4 KB

Smaller And Faster Updates

Download what is changed.

• Saves download time

• Saves data costs

Recap

17

Quick Summary

• Profile Your App

• Dynamic Analyzer

• Valgrind

• Tizen Trace

18

Quick Summary

• Under The Hood

• Faster boot

• Faster open times

• Delta Upgrades

19

Conclusion

• Optimization is tough, but with insightful tools and best programming

practices we can improve our applications.

! - ?

20

Reference

• https://developer.tizen.org/development/dev-guide/2.3.0

• https://docs.enlightenment.org/auto/efl/

• http://valgrind.org/

https://developer.tizen.org/development/dev-guide/2.3.0
https://developer.tizen.org/development/dev-guide/2.3.0
https://developer.tizen.org/development/dev-guide/2.3.0
https://developer.tizen.org/development/dev-guide/2.3.0
https://docs.enlightenment.org/auto/efl/
https://docs.enlightenment.org/auto/efl/
http://valgrind.org/
http://valgrind.org/

Thank you

DIY: Tool Kit

23

Instrument Code

-finstrument-functions -funwind-tables

PS: don’t forget to remove these flags in production code

24

Instrument Code

25

Instrument Code

26

Instrument Code

27

Instrument Code

trace.out.<pid> contains

• function call graph with timing info

• fps data

• Use provided scripts to analyze the

trace file

• <TBD> share demo app and scripts

code

28

Function Call Graph

29

Frames Per Second Calculator
evas_event_callback_add()

Performance Tips

31

Performance Tips - EFL

• Use elm_genlist_homogeneous_set to lazy-loading which increases

the performance for scrolling the list

32

elm_genlist_homogeneous_set

Good

Better

33

Performance Tips - EFL

• Use evas_object_image_preload to preload images in the

background. Useful for albums slide show or gallery etc

• Eina supports base data types like hash, array, list. Choose the data

structure that fits the best

• Hash are good for search. Array is good for index based reference

• Recommended to call app_resource_manager_init() &

app_resource_manager_release() during app init and terminate

only. (API since 2.4)

34

Power Aware Programming

• Coalesce work to allow maximum idle time

• Coalesce disk writes

• Coalesce NW access

• Use data compression wherever possible in NW transmits

• Wherever possible, use ‘ecore_poller_add’ instead of ecore timer

• Ecore poller tries to call callbacks as many as possible, in one loop

time time

Frequent wakeup Less wakeups

35

Be Responsive to System Events

• device_add_callback() allows you to monitor battery level, display

state, charging state etc

• Use this information to reduce CPU load or power hungry operations in

your applications

• Be responsive to Low memory event

• Free up memory by freeing memory pool, if any

• Flush object caches. elm_cache_all_flush()

• Any large DS which is not referred frequently, save it to disk and retrieve

back later, when memory is OK

• Fix memory leaks using IDE tool like ‘valgrind’

36

Running The Ttrace

• From IDE

• From Command Line

• $ cd TIZEN_SDK_HOME/tools/ttrace

• $./ttrace.py --time=10 --buf-size=102400 --o op_filename.html

• $./ttrace.py --help

37

App Launch Time = Time To Draw First Screen

1. Visual Readiness

2. Touch Readiness

3. On Demand

38

App Launch Time – defer code

• Visual Readiness
$ evas_object_smart_callback_add(elm_win, "focus,in",

window_focus_in_callback, NULL);

• Touch Readiness

1 From Window “focus” callback defer these codes using animator
$ ecore_animator_add(Ecore_Task_Cb func,const void* data);

• On Demand

1 Usually done from respective UI call backs

39

App Launch Time – Trace Example

dep_init

dep_init

40

App Freeze

Touch Events

41

Why did it happen?

UI thread

42

Have fewer blocking calls on UI thread!

* EFL is not thread safe

43

Confirm the fix!

44

Frames Per Second - FPS

• The optimal frame rate is considered to be around frames per

second

• This means that application should spend at most

serving each frame

• Above that, there isn’t much of a perceivable difference

• If its less, then user would notice UI stutter

60

1/60 s = 16.7 ms

45

Checking FPS with Tizen Trace

