
Cedric BAIL
Samsung Research America

2

Tizen Native UI
A True & Free Software Graphical Toolkit Designed for the Embedded World

3

A True & Free Software Graphical Toolkit Designed for the Embedded World

● Introduction to EFL history

● Optimization for the Embedded World

● Current Work

● Possible Areas of Improvement

4

Who am I?

● Cedric BAIL <cedric@osg.samsung.com>

● Working on embedded technology since 2004 (mobile, set top box, …)

● Working on Enlightenment technology since 2007

● Working for Samsung since 2011

● Gained some experience along the way on:

– Optimization (CPU, memory, battery)

– Rendering pipeline

mailto:cedric@osg.samsung.com
mailto:cedric@osg.samsung.com

5

Tizen Native UI – EFL, Enlightenment Foundation Libraries

– What are the Enlightenment Foundation Libraries?
● Toolkit created for Enlightenment 17

6

Tizen Native UI – Enlightenment 17

– Enlightenment project started in 1997 as a window manager

– First window manager of GNOME

– Full rewrite started in 2001, same time EFL development started

– Main belief was that there will never be “a year of the Linux desktop”

– Enlightenment is first trying to serve its developer base

– Enlightenment is usable in embedded devices

– Tizen uses it for Window Management

– Fills need for a toolkit that scales from embedded to high end desktops

– Fills need for a stack that will serve multiple applications on embedded devices

7

Tizen Native UI – EFL, Enlightenment Foundation Libraries

– GUI toolkit that targets embedded devices

– Licensed under a mix of LGPL and BSD license

– Optimized to reduce CPU, GPU, memory and battery usage

– Supports international language requirement (LTR/RTL, UTF8)

– Supports all variations of screen and input device (scale factor)

– Full themability (layout of the application included)

– Profile support

– Could be made to fit in 8MB with a minimal set of dependencies included

– Modular design

8

Tizen Native UI – EFL, Enlightenment Foundation Libraries

X11

OpenGL

EINA
MEMPOOL

EVAS

JPEG

PNG

GIF

TIFF

EET

SVG

MORE...

XRENDER

OPENGL/ES

X11 (SOFTWARE)

FB (SOFTWARE)

MORE...

EET

EMBRYO

EDJE

ELEMENTARY E-DBUS DBUS

ECORE
FILE

X11

CON

IPC

FB

EVAS

QUARTZ

INPUT

JOB

SDL

WIN32/CE

MORE...

EFREET

MEMORY (RAM)
(DATA STRUCTURES)

DATA IN STORAGE
(DISK/FLASH ETC.)

PIXELS ON A
DISPLAY

IMAGE FILES
IN STORAGE

OTHER APPLICATIONS
AND SERVICES

USER INTERACTION
AND FEEDBACK

INPUT DEVICES
AND OTHER
SYSTEM SERVICES
AND COMPONENTS

ABSTRACTED UI
COMPONENTS
FROM STORAGE

FREEDESKTOP.ORG
STANDARDS LAYER

FAST VIRTUAL
MACHINE
FOR LOGIC
AUGMENTATION

9

Core Differences – Evas, Scene Graph!

● The brain of EFL
● Scene graph library with more than 10 years of optimization in it
● Glitch-free rendering
● Reduces overdrawing
● Reduces memory waste by deduplicating as much as possible
● Compressed glyph rendering
● Portable (SDL, X11, Wayland, FB, DRM, Windows, Mac OS X, …)
● Optimized software renderer (MMX, SSE*, Neon)
● Optimized use of GPU (optional)

– Support for partial updates in cases where drivers do as well

– Reduced context and texture switch as much as possible

– Reduced memory overhead

10

Core Differences – Evas, Scene Graph!

11

Core Differences – Edje, Theming

● The heart of EFL
● Theme and layout engine
● Descriptive langage
● Uses Evas for rendering logic (fully independent from the system)
● Doesn't require an FPU
● Optimized load time (time to first frame) and run time
● Reduced memory fragmentation

12

Core Differences – Edje, Theming

13

Core Differences– Eet, Structure Serialization

● Very specific to EFL
● Fast serialization library for file storage and network communication
● Stores image, sounds, font
● Reduces overhead to load the same data across multiple

applications
● Provides tools to convert to and from a human readable form
● Configuration and theme are done using this library
● If you write C, you want Eet!

14

Core Differences – Elementary, Widget

● The face of EFL
● Widgets toolkit
● Use Edje and Evas infrastructure
● Screen and input independence achieved by:

– Scale factor

– Finger size

● Profile support (define configuration on a per-window basis)
● Fully themable
● Supports touchscreen

15

Optimization

● Before optimizing anything, you need numbers!
● Any benchmark is a partial view of an application
● Focus on revealing the biggest cost of all applications
● It will never be a complete, perfect picture
● You need reference points that are valid from one test to

another

16

Optimization – Expedite, our Benchmark Tool

● An EFL application that forces maximum frames on screen
● Currently tests only Evas primitives directly
● Works with all previous EFL versions
● Tests specific paths in the rendering pipeline
● If EFL supports a target, expedite will work
● Provides a picture of how powerful the hardware is
● Run for every release to ensure there are no speed regressions

17

Optimization – Reading Result

0

100

200

300

400

500

600

700

1.8

1.9

1.10

1.11

1.12

18

Optimization – Reading Result

1.8 1.9 1.10 1.11 1.12
300

310

320

330

340

350

360

 EVAS SPEED (WEIGHTED)

19

Optimization – Being Humble!

● Benchmarking reliably is difficult, especially on synthetic tests
● Even with multiple rounds
● Requires human intervention to understand what is going on
● Gives an overall idea of what is going on
● Need more complex code
● Need improved logic to determine if measures are correct

20

Optimization – Impact of Preloading and Shared Cache Infrastructure

● EFL is designed for the embedded world, but is used on
the desktop as well

● Multiple applications running at the same time
● The more applications capable of runing at the same time, the

better
● Time to first frame is critical
● Scenarios with no swap is common

21

Optimization – Reducing Memory Usage Per Application

● Having a software backend helps (GL consumes more than 10MB)
● Letting the kernel choose when to throw away data helps (mmap)
● Reducing memory duplication per process is a first step

– String share

– Eet

– Image/Font cache

– Copy On Write (When introduced saved 10% of memory and gain 5% on CPU)

22

Optimization - Reducing Memory Usage Globally is Necessary

● Every application using EFL has at least one thing in common
EFL!

● Meaning that part of the libraries' initialization could be shared
Welcome quicklaunch!

● Applications that use the same system theme will be similar visually
● Image/Glyph/Font geometry are costly to load and consume memory
● Sharing is doable, but tricky

Welcome Cserve2!

23

Optimization - Quicklaunch

Pros:
– Libraries are preloaded in memory

– Link is done once

– Partial initialization done once

– Preload library in memory at boot time

Cons:
– Tools need to read the updated argv[0]

– Quicklaunch does some of the job of systemd –user

24

Optimization - Cserve2

● Pros:
– Decode image/glyph once

– Share pixel data

– Faster startup time, reduced memory usage

● Cons:
– Security credential progapagtion isn't implemented, only user level

– No integration with kernel to act in OOM situation

– Difficult to do restart on crash without crashing client

– Requires client to have the same theme!!!

25

Optimization – Impact of Preloading and Shared Cache Infrastructure

RPi Free memory RPi Cached memory
0

10000

20000

30000

40000

50000

60000

70000

80000

None

Quicklaunch

CServe2

Quicklaunch + CServe2

26

Optimization – Impact of Preloading and Shared Cache Infrastructure

ELM_FIRST_FRAME=t elemines
0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

None

Quicklaunch

CServe2

Quicklaunch + CServe2

27

Optimization – Power Consumption on RPi

● Normal = 2W * 4.20s
● Quicklaunch = 2W * 2.97s
● Cserve2 = 2W * 4.26s
● Quicklaunch + Cserve2 = 2W * 3.10s

– (Energy consumption is an average)

28

Optimization – Quicklaunch

● Preloading and partial initialization of EFL does pay off

● Could be improved by preconnecting to X/Wayland and
preloading the theme

● Need to find a proper fix to integrate with systemd user
session

29

Optimization - Cserve2

● High upfront cost
● Does not share texture (possible with

Wayland)
● Still a lot of potential, but requires work:

– Cache of disk RAW image when applications are minized

– Detect usual images needed by applications and load them as
soon as the applications start

30

Optimization – Single Instance

● Alternative to preloading: single instance
● Use case, one process, multiple window:

 Terminology
● Doesn't apply to all applications
● Doesn't provide process separation…
● One goes down, everyone goes down !

31

Terminology

32

Optimization – Single Instance vs Multi Process

RPi Free memory RPi Cached memory
0

10000

20000

30000

40000

50000

60000

70000

80000

Single instance

Multi process

33

Optimization – Single Instance

● It improves cost, especially for big desktop applications

● Potential for systemd –user session

● Has limitation that can't be overcome, so not a generic
solution

34

● EFL community cares about performance
● Samsung cares about performance for all product lines
● There is always room for improvement
● Evas scenegraph logic is more than 10 years old, refactoring and

cleaning is necessary
● Improving our tests suites and especially our benchmark is a

permanent task
● Never ending story! Always something to improve!

35

Evas, Let's Rewrite Everything!

● Built at a time where SMP wasn't common

● Linux Kernel scheduler is improving

● Learned a lot about what we can do with the hardware
we have to reduce memory, cpu and battery
consumption!

36

Evas – Current Rendering Pipeline

37

Evas – New Pipeline Design

38

Possible Areas of Improvement

● Integration of Cserve2 with Wayland
● Generaly improve Cserve2 (RAW image cache, application

image preloading, etc.)
● Add relative positionning support
● Add hardware layer support
● Provide a way to cache flattened structure across

applications (useful for theme, icons description, strings, ...)

39

There's Still a Lot of Work to Do!

● Contributions are welcome from all around the world!

● True, open source project with a community; everyone can c
ontribute directly!

● More companies are using it other than Samsung

● Join the mailing list and IRC!

● And poke me around any time during the event if you have
question!

40

Questions?

Cedric BAIL
Samsung Research America

2

Tizen Native UI
A True & Free Software Graphical Toolkit Designed for the Embedded World

3

A True & Free Software Graphical Toolkit Designed for the Embedded World

● Introduction to EFL history

● Optimization for the Embedded World

● Current Work

● Possible Areas of Improvement

The plan of this talk is going to be

4

Who am I?

● Cedric BAIL <cedric@osg.samsung.com>

● Working on embedded technology since 2004 (mobile, set top box, …)

● Working on Enlightenment technology since 2007

● Working for Samsung since 2011

● Gained some experience along the way on:

– Optimization (CPU, memory, battery)

– Rendering pipeline

I am working for Samsung Open Source Group on EFL
I have been working on embedded technology for

more than a decade now

5

Tizen Native UI – EFL, Enlightenment Foundation Libraries

– What are the Enlightenment Foundation Libraries?
● Toolkit created for Enlightenment 17

So what is this EFL, Enlightenment Foundation
Libraries ? Where did it comes from ?

It is a toolkit, a set of libraries, that was created over
the last decade to develop Enlightenment 17

Now you are asking, what is Enlightenment 17 ! Right,
so in the Linux world we use a X server to display
stuff on screen this day. This X server doesn't have
any policy regarding window placement, window
border and background. This is the job of the
Window Manager, and that what Enlightenment
does.

6

Tizen Native UI – Enlightenment 17

– Enlightenment project started in 1997 as a window manager

– First window manager of GNOME

– Full rewrite started in 2001, same time EFL development started

– Main belief was that there will never be “a year of the Linux desktop”

– Enlightenment is first trying to serve its developer base

– Enlightenment is usable in embedded devices

– Tizen uses it for Window Management

– Fills need for a toolkit that scales from embedded to high end desktops

– Fills need for a stack that will serve multiple applications on embedded devices

Now that we know a little bit what Enlightenment 17 is,
a little bit more background about it and its
community

It is an open source/free software

7

Tizen Native UI – EFL, Enlightenment Foundation Libraries

– GUI toolkit that targets embedded devices

– Licensed under a mix of LGPL and BSD license

– Optimized to reduce CPU, GPU, memory and battery usage

– Supports international language requirement (LTR/RTL, UTF8)

– Supports all variations of screen and input device (scale factor)

– Full themability (layout of the application included)

– Profile support

– Could be made to fit in 8MB with a minimal set of dependencies included

– Modular design

But for that goal, we needed a new toolkit. Nothing
when we started EFL existed that could meet our
need and there was no project that could be moved
to be aligned to our goal as a community.

So we did spend a decade writing a new toolkit that
scale from the heaviest desktop to the smallest
embedded device and give you the best your
hardware can do.

8

Tizen Native UI – EFL, Enlightenment Foundation Libraries

X11

OpenGL

EINA
MEMPOOL

EVAS

JPEG

PNG

GIF

TIFF

EET

SVG

MORE...

XRENDER

OPENGL/ES

X11 (SOFTWARE)

FB (SOFTWARE)

MORE...

EET

EMBRYO

EDJE

ELEMENTARY E-DBUS DBUS

ECORE
FILE

X11

CON

IPC

FB

EVAS

QUARTZ

INPUT

JOB

SDL

WIN32/CE

MORE...

EFREET

MEMORY (RAM)
(DATA STRUCTURES)

DATA IN STORAGE
(DISK/FLASH ETC.)

PIXELS ON A
DISPLAY

IMAGE FILES
IN STORAGE

OTHER APPLICATIONS
AND SERVICES

USER INTERACTION
AND FEEDBACK

INPUT DEVICES
AND OTHER
SYSTEM SERVICES
AND COMPONENTS

ABSTRACTED UI
COMPONENTS
FROM STORAGE

FREEDESKTOP.ORG
STANDARDS LAYER

FAST VIRTUAL
MACHINE
FOR LOGIC
AUGMENTATION

I always prefer to show this diagram of how EFL component interact
than the classic layer way of displaying any stack of software. This
make it clear that has a developer you have access to every
component of that stack directly and that they interconnect each
other in many way.

The main 3 components and almost the reason of existence of EFL,
is Evas, EFL scenegraph library, Edje, the theme library, and
Elementary, the widget library. I will be more specific later on this
component.

The other component that you can see, that are actually more
classic :

- Eina, data type library
- Ecore, event library
- Efreet, freedesktop library
- Embryo, scripting library
- Eldbus, dbus library
- Eet, serialization libray

There are a few more that are not on this graph, I will let you
discover them. We do have some doc now :-)

9

Core Differences – Evas, Scene Graph!

● The brain of EFL
● Scene graph library with more than 10 years of optimization in it
● Glitch-free rendering
● Reduces overdrawing
● Reduces memory waste by deduplicating as much as possible
● Compressed glyph rendering
● Portable (SDL, X11, Wayland, FB, DRM, Windows, Mac OS X, …)
● Optimized software renderer (MMX, SSE*, Neon)
● Optimized use of GPU (optional)

– Support for partial updates in cases where drivers do as well

– Reduced context and texture switch as much as possible

– Reduced memory overhead

So Evas, this is the main difference to any other toolkit.
The « raison d'etre » of EFL.

10

Core Differences – Evas, Scene Graph!

But what is a Scene Graph ? Where does that come from ?

It is something most game engine use with various trick in. I will
cover only here how Evas implement its Scene Graph, but there is
a huge amount of litterature on the subject if you are interested.

So Evas does keep a graph of the previous set of object and will
compare that to the one that need to be rendered on screen for
this frame. This give it the possibility to do nice trick.

Like shown here, where you will only update what change between
two frame. Having a graph make it possible to also only draw the
area that are really needed. We can also reorder the comand we
send to the GPU to limit the amount of Texture and Shader
change.

This structure enable a lot of optimization possibility that I don't have
time to cover here, but keep in mind that we do this by keeping our
memory foot print low by using various deduplication technique.
Like refcounting data and copy on write.

11

Core Differences – Edje, Theming

● The heart of EFL
● Theme and layout engine
● Descriptive langage
● Uses Evas for rendering logic (fully independent from the system)
● Doesn't require an FPU
● Optimized load time (time to first frame) and run time
● Reduced memory fragmentation

Very specific to EFL
Predate a lot of other solution and did inspire other

(Like Qt/QML solution)

12

Core Differences – Edje, Theming

As you can see here is multiple example of the same
button using different theme. Some even have
different effect, like mouse over effect, that are fully
implemented in the theme.

On the left is elementary default theme used in
elementary test application which display every
elementary widget

On the right is calaos, a home automation solution
which is using elementary widget for its user
interface without looking at all like a desktop
software.

13

Core Differences– Eet, Structure Serialization

● Very specific to EFL
● Fast serialization library for file storage and network communication
● Stores image, sounds, font
● Reduces overhead to load the same data across multiple

applications
● Provides tools to convert to and from a human readable form
● Configuration and theme are done using this library
● If you write C, you want Eet!

Oh, I forgot to tell you about this little « trick » library.

You basically just give it a pointer to a C structure and
presto it is serialized on the disk, network or in
memory. Of course the reverse work just as well, you
request to deserialize some data from disk, network
or memory and presto, you just got a pointer to your
C structure. Pretty handy if you do C development !

14

Core Differences – Elementary, Widget

● The face of EFL
● Widgets toolkit
● Use Edje and Evas infrastructure
● Screen and input independence achieved by:

– Scale factor

– Finger size

● Profile support (define configuration on a per-window basis)
● Fully themable
● Supports touchscreen

Actually that's the fourth widget set we write using EFL. That's what
happen when writting a widget got to easy !

This iteration is quite close to what we really had in mind, something
that can be used from the lower end device to the most beasty
desktop computer. It is a fully scalable widget set that should make
any kind of application possible.

There is two things that are important when we mean scale. First it
needs to scale its ressource usage to fit on low end device, but
also on high end by using all the possible hardware component to
be as efficient per watt as possible.

Second it needs to « scale » the UI and adapt to the device context.
How/where it is used. What the resolution of the device. What the
input method, its resolution, …

And all of that need to be dynamic !

15

Optimization

● Before optimizing anything, you need numbers!
● Any benchmark is a partial view of an application
● Focus on revealing the biggest cost of all applications
● It will never be a complete, perfect picture
● You need reference points that are valid from one test to

another

So back to the topic now that you have some
background :-) I mean, I have been telling you that
EFL is heavily optimized, but what does optimization
mean at all !

16

Optimization – Expedite, our Benchmark Tool

● An EFL application that forces maximum frames on screen
● Currently tests only Evas primitives directly
● Works with all previous EFL versions
● Tests specific paths in the rendering pipeline
● If EFL supports a target, expedite will work
● Provides a picture of how powerful the hardware is
● Run for every release to ensure there are no speed regressions

We have a simple tool designed to micro benchmark
some part of the rendering pipeline : « expedite »

It doesn't test Edje or Elementary (It could, just never
had the time to add test for)

Test is limited ! It only test what it test ! But it is going to
give you a good picture of what your hardware can
do as this is the first application that is going to run
once you have EFL setup on a system.

17

Optimization – Reading Result

0

100

200

300

400

500

600

700

1.8

1.9

1.10

1.11

1.12

So what kind of result do we get… pretty random, no ?

Things go up and down for every release on every test.
We do not get a constant result, mostly due to very
little variation on the CPU, kernel, memory and the
whole system state ! Basically any variation that is <
5 % is the result of some glitch somewhere in the
system that you can't really know why.

18

Optimization – Reading Result

1.8 1.9 1.10 1.11 1.12
300

310

320

330

340

350

360

 EVAS SPEED (WEIGHTED)

So we actually look at the aggregated score over time.
Here is all last year release and even by adjusting for
this 5 % error margin, 1.10 was actually quite slower
compared to 1.8 (from 350 ± 5% to 325 ± 5%). So in
1.11 I did track where that slow down was coming
from and boom we were back on track in term of
performance.

This is a never ending game. We have to constantly
test and benchmark efl to see what is going on and
fix speed regression as we see it…

But as I said, if you don't measure it, you are not going
to fix a problem. This is always partial and we have
to improve what we measure to detect issue that
does matter.

19

Optimization – Being Humble!

● Benchmarking reliably is difficult, especially on synthetic tests
● Even with multiple rounds
● Requires human intervention to understand what is going on
● Gives an overall idea of what is going on
● Need more complex code
● Need improved logic to determine if measures are correct

As you already noticed, benchmarking is tricky !

Synthetic tests tend to trigger a lot of subsystem, even
kernel scheduler has a huge impact on the result !
Meaning, if you compare something, make sure that
everything is identical, including the software stack
up to what you are testing !

20

Optimization – Impact of Preloading and Shared Cache Infrastructure

● EFL is designed for the embedded world, but is used on
the desktop as well

● Multiple applications running at the same time
● The more applications capable of runing at the same time, the

better
● Time to first frame is critical
● Scenarios with no swap is common

Let see some system wide optimization and what there
benefit and impact. Actually Samsung care much
more if not only for the embedded case scenario use
of EFL.

21

Optimization – Reducing Memory Usage Per Application

● Having a software backend helps (GL consumes more than 10MB)
● Letting the kernel choose when to throw away data helps (mmap)
● Reducing memory duplication per process is a first step

– String share

– Eet

– Image/Font cache

– Copy On Write (When introduced saved 10% of memory and gain 5% on CPU)

A few trick we use in EFL stack for each application to reduce
memory, CPU and battery usage.

- stringshare is just refcounting string in the same process. Speed
improvement and memory reduction. Instead of strdup, it does just
a +1 on the refcounting !

- Eet share directly data from disk into memory using mmap. This
leave the kernel able to remove unused memory optimistically.

- Image/font cache, make sure we do actually reuse the image and
font instead of reloading them to often. Also put them as close as
possible in memory if possible (with GL backend we do build a
texture atlas at runtime to fit all the content that we display).

- Copy On Write (Cow), actually saving memory also give a speed
improvement, that's why we did introduce a CoW system in our
scenegraph (We should be using it more over time)

22

Optimization - Reducing Memory Usage Globally is Necessary

● Every application using EFL has at least one thing in common
EFL!

● Meaning that part of the libraries' initialization could be shared
Welcome quicklaunch!

● Applications that use the same system theme will be similar visually
● Image/Glyph/Font geometry are costly to load and consume memory
● Sharing is doable, but tricky

Welcome Cserve2!

Now let's focus on reducing memory duplication
accross the system ! What does all application have
in common ?!

23

Optimization - Quicklaunch

Pros:
– Libraries are preloaded in memory

– Link is done once

– Partial initialization done once

– Preload library in memory at boot time

Cons:
– Tools need to read the updated argv[0]

– Quicklaunch does some of the job of systemd –user

So quicklaunch is actually a server that pre start a
process linked to EFL and minimally initialize it.
Actually in use in Tizen.

24

Optimization - Cserve2

● Pros:
– Decode image/glyph once

– Share pixel data

– Faster startup time, reduced memory usage

● Cons:
– Security credential progapagtion isn't implemented, only user level

– No integration with kernel to act in OOM situation

– Difficult to do restart on crash without crashing client

– Requires client to have the same theme!!!

Cserve2 is a server that enable sharing image pixmap,
font glyph information and pixmap.

25

Optimization – Impact of Preloading and Shared Cache Infrastructure

RPi Free memory RPi Cached memory
0

10000

20000

30000

40000

50000

60000

70000

80000

None

Quicklaunch

CServe2

Quicklaunch + CServe2

So let's see the impact on free memory and cache
memory after a boot.

The more free memory the better. It means the system
has been able to save some accross the board.

The less cached memory, the less data it did need to
load in memory to start. This means usually faster
start time. Reducing the cache needed for the
system also help giving more room for the kernel for
caching more information for application.

As you can see Quicklaunch payoff easily, but actually
the combination of Quicklaunch and Cserve2 does
pay the most.

26

Optimization – Impact of Preloading and Shared Cache Infrastructure

ELM_FIRST_FRAME=t elemines
0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

None

Quicklaunch

CServe2

Quicklaunch + CServe2

Let see the impact of time to first frame on an actual
EFL application, elemines (A little swipe mine game).

As you see, only Quicklaunch as a direct benefit.
Cserve2 doesn't pay out for application startup yet.
This is quite a miss, but there is room for
improvement.

27

Optimization – Power Consumption on RPi

● Normal = 2W * 4.20s
● Quicklaunch = 2W * 2.97s
● Cserve2 = 2W * 4.26s
● Quicklaunch + Cserve2 = 2W * 3.10s

– (Energy consumption is an average)

Some energy consumption benchmark here. The idea
was to measure the energy consumed for the time to
first frame. As you can see, only Quicklaunch is
really worth it at this stage (Which explain it's use in
Tizen)

28

Optimization – Quicklaunch

● Preloading and partial initialization of EFL does pay off

● Could be improved by preconnecting to X/Wayland and
preloading the theme

● Need to find a proper fix to integrate with systemd user
session

So let make some conclusion on quicklaunch.

29

Optimization - Cserve2

● High upfront cost
● Does not share texture (possible with

Wayland)
● Still a lot of potential, but requires work:

– Cache of disk RAW image when applications are minized

– Detect usual images needed by applications and load them as
soon as the applications start

And now let's conclude about Cserve2.

30

Optimization – Single Instance

● Alternative to preloading: single instance
● Use case, one process, multiple window:

 Terminology
● Doesn't apply to all applications
● Doesn't provide process separation…
● One goes down, everyone goes down !

Let's look at an alternate solution, instead of having
multiple process that duplicate ressource, let's have
just one with multiple example !

31

Terminology

As an example we will be taking Terminology an EFL
based replacement for xterm and any kind of
terminal console emulator, but much more modern !

Able to display image and video, play sound, split
screen and have multiple tab… Oh and as fast as
urxvt the reference for terminal emulator, but much
more prettier !

32

Optimization – Single Instance vs Multi Process

RPi Free memory RPi Cached memory
0

10000

20000

30000

40000

50000

60000

70000

80000

Single instance

Multi process

As you can see, we do have a win on free memory,
that is not bad, but cached memory, strangely not. I
don't have an explanation that satisfy me for that
case, and this require some more analyzing.

33

Optimization – Single Instance

● It improves cost, especially for big desktop applications

● Potential for systemd –user session

● Has limitation that can't be overcome, so not a generic
solution

Let's conclude this topic !

34

● EFL community cares about performance
● Samsung cares about performance for all product lines
● There is always room for improvement
● Evas scenegraph logic is more than 10 years old, refactoring and

cleaning is necessary
● Improving our tests suites and especially our benchmark is a

permanent task
● Never ending story! Always something to improve!

35

Evas, Let's Rewrite Everything!

● Built at a time where SMP wasn't common

● Linux Kernel scheduler is improving

● Learned a lot about what we can do with the hardware
we have to reduce memory, cpu and battery
consumption!

There is a lot of things going on with the kernel
scheduler that I don't have time to talk about here,
but this has serious real impact on application
performance and battery usage. Don't hesitate to
come and talk with me on that subject later.

36

Evas – Current Rendering Pipeline

So the current rendering pipeline of Evas for GL is like
this. For software backend, all the green and yellow
in between now happen in a thread, leaving more
room for the main loop application code to run.

As you can see, the profile of the main thread is
changing quickly over time and not much time is left
to the application. Which should not be a serious
matter as most application do not need to do
anything heavy as that is what the toolkit does for
them, but problem is that the kernel is super
confused by this behavior and always bad at setting
the right clock speed and number of core on.

Actually this doesn't also fit with modern design like
Vulkan enable.

37

Evas – New Pipeline Design

This is where we are slowly going. Making sure that
the kernel understand what each thread is doing and
going to do, scaling better with coming Vulkan. That
is a very massive amount of work to do and is going
to likely take another year before it is « done », but
as we do time base release, we will slowly bring
improvement in.

38

Possible Areas of Improvement

● Integration of Cserve2 with Wayland
● Generaly improve Cserve2 (RAW image cache, application

image preloading, etc.)
● Add relative positionning support
● Add hardware layer support
● Provide a way to cache flattened structure across

applications (useful for theme, icons description, strings, ...)

If people want to join, there is a lot of place where we
can still improve EFL and where I can help mentor
them to contribute there.

39

There's Still a Lot of Work to Do!

● Contributions are welcome from all around the world!

● True, open source project with a community; everyone can c
ontribute directly!

● More companies are using it other than Samsung

● Join the mailing list and IRC!

● And poke me around any time during the event if you have
question!

40

Questions?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40

