
Tizen Native Development Tips to Save Time & Trouble

Tizen Developer Conference 2015
深圳 , 中华人民共和国

Shenzhen, People's Republic of China

Carsten Haitzler <c.haitzler@samsung.com>

Master Engineer Samsung Electronics, Korea
Enlightenment / EFL Founder

Tizen Development Today

Tizen Development Today

HTML5

HTML5

Tizen Development Today

HTML5 HTML5 + Native HTML5 + Native

HTML5 + NativeHTML5

Why Native or HTML5?

Pros & Cons

HTML5 Native

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

Native

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

Native

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

Native

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

Native

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

Native

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

Native

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

Native

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

+ Share code with large codebases

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

+ Share code with large codebases

+ Fast (startup and execute)

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

+ Share code with large codebases

+ Fast (startup and execute)

+ Use less memory

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

+ Share code with large codebases

+ Fast (startup and execute)

+ Use less memory

+ Less restricted on Tizen

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

+ Share code with large codebases

+ Fast (startup and execute)

+ Use less memory

+ Less restricted on Tizen

+ Grow an old-school UNIX beard

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

+ Share code with large codebases

+ Fast (startup and execute)

+ Use less memory

+ Less restricted on Tizen

+ Grow an old-school UNIX beard

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

+ Share code with large codebases

+ Fast (startup and execute)

+ Use less memory

+ Less restricted on Tizen

+ Grow an old-school UNIX beard

- More prone to programmer error

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

+ Share code with large codebases

+ Fast (startup and execute)

+ Use less memory

+ Less restricted on Tizen

+ Grow an old-school UNIX beard

- More prone to programmer error

- Takes more time to develop

Pros & Cons

HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

+ Share code with large codebases

+ Fast (startup and execute)

+ Use less memory

+ Less restricted on Tizen

+ Grow an old-school UNIX beard

- More prone to programmer error

- Takes more time to develop

- Different APIs to other platforms

Native

Native

● Used by system developers for most apps

Native

● Used by system developers for most apps
● Apps can be C or C++

Native

● Used by system developers for most apps
● Apps can be C or C++

– APIs to call in Tizen are C (Can be called from C++ as well as C)

Native

● Used by system developers for most apps
● Apps can be C or C++

– APIs to call in Tizen are C (Can be called from C++ as well as C)

● Can use Tizen SDK or GBS to build

Native

● Used by system developers for most apps
● Apps can be C or C++

– APIs to call in Tizen are C (Can be called from C++ as well as C)

● Can use Tizen SDK or GBS to build
– GBS is a Linux command-line tool to cross-compile Tizen software

Native

● Used by system developers for most apps
● Apps can be C or C++

– APIs to call in Tizen are C (Can be called from C++ as well as C)

● Can use Tizen SDK or GBS to build
– GBS is a Linux command-line tool to cross-compile Tizen software

● Entire OS is built using GBS on servers

Native

● Used by system developers for most apps
● Apps can be C or C++

– APIs to call in Tizen are C (Can be called from C++ as well as C)

● Can use Tizen SDK or GBS to build
– GBS is a Linux command-line tool to cross-compile Tizen software

● Entire OS is built using GBS on servers

– SDK is Eclipse based

Native API Content

Native API Content

● Majority of Native API comes from EFL

Native API Content

● Majority of Native API comes from EFL
– Open Source Project – http://www.enlightenment.org

Native API Content

● Majority of Native API comes from EFL
– Open Source Project – http://www.enlightenment.org
– Covers Main loop (UI), Rendering, OpenGL, Widgets, Comms, IPC, Threading,

Theme, etc.

Native API Content

● Majority of Native API comes from EFL
– Open Source Project – http://www.enlightenment.org
– Covers Main loop (UI), Rendering, OpenGL, Widgets, Comms, IPC, Threading,

Theme, etc.

● Other Tizen Native APIs

Native API Content

● Majority of Native API comes from EFL
– Open Source Project – http://www.enlightenment.org
– Covers Main loop (UI), Rendering, OpenGL, Widgets, Comms, IPC, Threading,

Theme, etc.

● Other Tizen Native APIs
– Multimedia, Messaging, Sensors, Alarm, Location, Lifecycle, Network, Security,

Social, Telephony, etc.

Native API Content

● Majority of Native API comes from EFL
– Open Source Project – http://www.enlightenment.org
– Covers Main loop (UI), Rendering, OpenGL, Widgets, Comms, IPC, Threading,

Theme, etc.

● Other Tizen Native APIs
– Multimedia, Messaging, Sensors, Alarm, Location, Lifecycle, Network, Security,

Social, Telephony, etc.
– Other open source project APIs suported like cURL, libEXIF, libXML, Sqlite etc.

Why Speak?

Why Speak?

● Founded Enlightenment / EFL development

Why Speak?

● Founded Enlightenment / EFL development
● Wrote the largest part of EFL code personally

Why Speak?

● Founded Enlightenment / EFL development
● Wrote the largest part of EFL code personally

– EFL is over 1,000,000 lines of C code

Why Speak?

● Founded Enlightenment / EFL development
● Wrote the largest part of EFL code personally

– EFL is over 1,000,000 lines of C code

● Wrote the Window Manager / Compositor for Tizen

Why Speak?

● Founded Enlightenment / EFL development
● Wrote the largest part of EFL code personally

– EFL is over 1,000,000 lines of C code

● Wrote the Window Manager / Compositor for Tizen
– Enlightenment is over 220,000 Lines of C code

Why Speak?

● Founded Enlightenment / EFL development
● Wrote the largest part of EFL code personally

– EFL is over 1,000,000 lines of C code

● Wrote the Window Manager / Compositor for Tizen
– Enlightenment is over 220,000 Lines of C code

● Have worked on Tizen since before 1.0

Why Speak?

● Founded Enlightenment / EFL development
● Wrote the largest part of EFL code personally

– EFL is over 1,000,000 lines of C code

● Wrote the Window Manager / Compositor for Tizen
– Enlightenment is over 220,000 Lines of C code

● Have worked on Tizen since before 1.0
– 7+ years – before it was even Tizen

Why Speak?

● Founded Enlightenment / EFL development
● Wrote the largest part of EFL code personally

– EFL is over 1,000,000 lines of C code

● Wrote the Window Manager / Compositor for Tizen
– Enlightenment is over 220,000 Lines of C code

● Have worked on Tizen since before 1.0
– 7+ years – before it was even Tizen
– Full-time Engineer at Samsung for 5+ Years

Why Speak?

● Founded Enlightenment / EFL development
● Wrote the largest part of EFL code personally

– EFL is over 1,000,000 lines of C code

● Wrote the Window Manager / Compositor for Tizen
– Enlightenment is over 220,000 Lines of C code

● Have worked on Tizen since before 1.0
– 7+ years – before it was even Tizen
– Full-time Engineer at Samsung for 5+ Years

● So if you have Questions – Please Ask I don't bite

Tips to make your life easier

Tips to make your life easier

● Covering the EFL parts of Tizen…

Tips to make your life easier

● Covering the EFL parts of Tizen…
● Show you some pointers to avoid mistakes

Tips to make your life easier

● Covering the EFL parts of Tizen…
● Show you some pointers to avoid mistakes
● “If it's hard, you're doing it wrong”

Tips to make your life easier

● Covering the EFL parts of Tizen…
● Show you some pointers to avoid mistakes
● “If it's hard, you're doing it wrong”

– There is often an easier way

Tips to make your life easier

● Covering the EFL parts of Tizen…
● Show you some pointers to avoid mistakes
● “If it's hard, you're doing it wrong”

– There is often an easier way

● Ask for help if you get stuck or think you could do something better

Tips to make your life easier

● Covering the EFL parts of Tizen…
● Show you some pointers to avoid mistakes
● “If it's hard, you're doing it wrong”

– There is often an easier way

● Ask for help if you get stuck or think you could do something better
– There are real humans willing to help

Tips to make your life easier

● Covering the EFL parts of Tizen…
● Show you some pointers to avoid mistakes
● “If it's hard, you're doing it wrong”

– There is often an easier way

● Ask for help if you get stuck or think you could do something better
– There are real humans willing to help
– Links at end of presentation

Anatomy of the Application Core

Start

main()

Process
setup work

Anatomy of the Application Core

Main LoopStart

main()

ui_app_main()

Process
setup work

Anatomy of the Application Core

Main LoopStart

Create

main()

ui_app_main()

app_create()

Create Window and
Content here!

Process
setup work

Anatomy of the Application Core

Main LoopStart

Create

Main Loop

main()

ui_app_main()

ui_app_main()

app_create()

Create Window and
Content here!

Process
setup work

Anatomy of the Application Core

Main LoopStart

Create Terminate

Main Loop

main()

ui_app_main()

ui_app_main()

app_create() app_terminate()

Create Window and
Content here!

Delete Window and
trigger shutdown

Process
setup work

Anatomy of the Application Core

Main LoopStart Exit

Create Terminate

Main Loop

main()

ui_app_main()

ui_app_main()

app_create() app_terminate()

Create Window and
Content here!

Delete Window and
trigger shutdown

Process shutdown
work

Process
setup work

Now … Creation of your UI

Main LoopStart Exit

Create Terminate

Main Loop

main()

ui_app_main()

ui_app_main()

app_create() app_terminate()

Create Window and
Content here!

Delete Window and
trigger shutdown

Process shutdown
work

Process
setup work

Create a Window & Content

● Add a window

Create a Window & Content

● Add a window
● Add a conformant (if you want to handle keyboard and indicator)

Create a Window & Content

● Add a window
● Add a conformant (if you want to handle keyboard and indicator)
● Add more containers/content (Naviframe, Box, Table etc.)

Create a Window & Content

● Add a window
● Add a conformant (if you want to handle keyboard and indicator)
● Add more containers/content (Naviframe, Box, Table etc.)
● Add more content (Lists, Buttons, Labels etc.)

Create a Window & Content

● Add a window
● Add a conformant (if you want to handle keyboard and indicator)
● Add more containers/content (Naviframe, Box, Table etc.)
● Add more content (Lists, Buttons, Labels etc.)
● Add callbacks to objects to listen to events

Create a Window & Content

● Add a window
● Add a conformant (if you want to handle keyboard and indicator)
● Add more containers/content (Naviframe, Box, Table etc.)
● Add more content (Lists, Buttons, Labels etc.)
● Add callbacks to objects to listen to events
● Show window

Create a Window & Content

● Add a window
● Add a conformant (if you want to handle keyboard and indicator)
● Add more containers/content (Naviframe, Box, Table etc.)
● Add more content (Lists, Buttons, Labels etc.)
● Add callbacks to objects to listen to events
● Show window
● … Let main loop run and call callbacks

Now … Mainloop Interactions

Main LoopStart Exit

Create Terminate

Main Loop

main()

ui_app_main()

ui_app_main()

app_create() app_terminate()

Create Window and
Content here!

Delete Window and
trigger shutdown

Process shutdown
work

Process
setup work

Application Core & Threads

Main Loop

UI Creation, Events,, Mainloop,
Core Rendering, Async I/O

Application Core & Threads

Main Loop

Thread

UI Creation, Events,, Mainloop,
Core Rendering, Async I/O

Application Core & Threads

Main Loop

Thread

Thread

UI Creation, Events,, Mainloop,
Core Rendering, Async I/O

Application Core & Threads

Main Loop

Thread

Thread

Thread

UI Creation, Events,, Mainloop,
Core Rendering, Async I/O

Application Core & Threads

Main Loop

Thread

Thread

Thread

UI Creation, Events,, Mainloop,
Core Rendering, Async I/O

Data structure, I/O, Thread I/O handling,
Prepare Data/Rendering before Display

Application Core & Threads

Thread Safe Main Loop Only

Application Core & Threads

Thread Safe

LibC Calls…
eina_…
ecore_main_loop_thread_safe_call_async()
ecore_main_loop_thread_safe_call_sync()
ecore_thread_main_loop_begin()
ecore_thread_main_loop_end()
ecore_thread_check()
ecore_thread_feedback()
ecore_thread_reschedule()
ecore_thread_local_data_add()
ecore_thread_local_data_set()
ecore_thread_local_data_find()
ecore_thread_local_data_del()
ecore_thread_global_data_add()
ecore_thread_global_data_set()
ecore_thread_global_data_find()
ecore_thread_global_data_del()
ecore_thread_global_data_wait()
ecore_pipe_write()
ecore_pipe_read_fd()
ecore_pipe_write_fd()
ecore_pipe_wait()

Main Loop Only

Application Core & Threads

Thread Safe

LibC Calls…
eina_…
ecore_main_loop_thread_safe_call_async()
ecore_main_loop_thread_safe_call_sync()
ecore_thread_main_loop_begin()
ecore_thread_main_loop_end()
ecore_thread_check()
ecore_thread_feedback()
ecore_thread_reschedule()
ecore_thread_local_data_add()
ecore_thread_local_data_set()
ecore_thread_local_data_find()
ecore_thread_local_data_del()
ecore_thread_global_data_add()
ecore_thread_global_data_set()
ecore_thread_global_data_find()
ecore_thread_global_data_del()
ecore_thread_global_data_wait()
ecore_pipe_write()
ecore_pipe_read_fd()
ecore_pipe_write_fd()
ecore_pipe_wait()

Main Loop Only

elm_…
evas_…
edje_…
ecore_…
…

Call “Main Loop” Calls from Thread

Call “Main Loop” Calls from Thread

…
ecore_thread_main_loop_begin(); { // Begin main loop code
 …
 timer = ecore_timer_add(42.0, my_timer_callback, NULL);
 evas_object_move(my_object, x, y);
 …
} ecore_thread_main_loop_end(); // End main loop code
…

Very simple & easy way to call rare bl.ocks of code
within main loop context from a thread

Call “Main Loop” Calls from Thread

…
ecore_thread_main_loop_begin(); { // Begin main loop code
 …
 timer = ecore_timer_add(42.0, my_timer_callback, NULL);
 evas_object_move(my_object, x, y);
 …
} ecore_thread_main_loop_end(); // End main loop code
…

or
…
void my_main_loop_code(void *data) { // Begin main loop code
 My_Data *my_data = data;
 …
 timer = ecore_timer_add(42.0, my_timer_callback, NULL);
 evas_object_move(my_data->obj, my_data->x, my_data->y);
 free(my_data);
 …
} // End main loop code
…

…
// Queue function to be called in the main loop
My_Data *my_data = calloc(1, sizeof(My_Data));
my_data->x = x;
my_data->y = y;
my_data->obj = my_object;
ecore_main_loop_thread_safe_call_async(my_main_loop_code, my_data);
…

Very simple & easy way to call rare bl.ocks of code
within main loop context from a thread

Very efficent way to call code async very
frequently from thread in main loop context

Thread Worker Pool

Thread Worker Pool

● You can also use standard worker pool

Thread Worker Pool

● You can also use standard worker pool
– ecore_thread_new() adds a thread work item to the queue

Thread Worker Pool

● You can also use standard worker pool
– ecore_thread_new() adds a thread work item to the queue

● Keep work items short

Thread Worker Pool

● You can also use standard worker pool
– ecore_thread_new() adds a thread work item to the queue

● Keep work items short
● Pool of workers pull thread items off the queue and hand results back to mainloop

Thread Worker Pool

● You can also use standard worker pool
– ecore_thread_new() adds a thread work item to the queue

● Keep work items short
● Pool of workers pull thread items off the queue and hand results back to mainloop
● Limited size of pool to avoid overloading CPU (pool size based on number of cores)

Thread Worker Pool

● You can also use standard worker pool
– ecore_thread_new() adds a thread work item to the queue

● Keep work items short
● Pool of workers pull thread items off the queue and hand results back to mainloop
● Limited size of pool to avoid overloading CPU (pool size based on number of cores)
● Saves managing your own thread pool

Thread Worker Pool

● You can also use standard worker pool
– ecore_thread_new() adds a thread work item to the queue

● Keep work items short
● Pool of workers pull thread items off the queue and hand results back to mainloop
● Limited size of pool to avoid overloading CPU (pool size based on number of cores)
● Saves managing your own thread pool
● Simple to use for tasks easily divided up into N discrete small units

Thread Worker Pool

● You can also use standard worker pool
– ecore_thread_new() adds a thread work item to the queue

● Keep work items short
● Pool of workers pull thread items off the queue and hand results back to mainloop
● Limited size of pool to avoid overloading CPU (pool size based on number of cores)
● Saves managing your own thread pool
● Simple to use for tasks easily divided up into N discrete small units

● See Tizen and Elementary docs for more threading usage examples

Threading Summary

Threading Summary

● Use threads, but design carefully

Threading Summary

● Use threads, but design carefully
– Divide tasks into isolated work per thread

Threading Summary

● Use threads, but design carefully
– Divide tasks into isolated work per thread

● Minimizes possible bugs by minimizing locking requirements

Threading Summary

● Use threads, but design carefully
– Divide tasks into isolated work per thread

● Minimizes possible bugs by minimizing locking requirements
● Mainloop “collects results & implements display state”

Threading Summary

● Use threads, but design carefully
– Divide tasks into isolated work per thread

● Minimizes possible bugs by minimizing locking requirements
● Mainloop “collects results & implements display state”
● Use ecore thread infra to save re-inventing the wheel

Threading Summary

● Use threads, but design carefully
– Divide tasks into isolated work per thread

● Minimizes possible bugs by minimizing locking requirements
● Mainloop “collects results & implements display state”
● Use ecore thread infra to save re-inventing the wheel

● If you have issues, please report/bring them up!

Now … Back to the Window that is created

Main LoopStart Exit

Create Terminate

Main Loop

main()

ui_app_main()

ui_app_main()

app_create() app_terminate()

Create Window and
Content here!

Delete Window and
trigger shutdown

Process shutdown
work

Process
setup work

Window Content

Window Content

● The window is a full scene graph

Window Content

● The window is a full scene graph
– Everything you see is an object that persists

Window Content

● The window is a full scene graph
– Everything you see is an object that persists
– Changes to all objects are stateful

Window Content

● The window is a full scene graph
– Everything you see is an object that persists
– Changes to all objects are stateful

● They retain their state as it was last set

Window Content

● The window is a full scene graph
– Everything you see is an object that persists
– Changes to all objects are stateful

● They retain their state as it was last set

– Rendering is “automatic” after going idle at next VSYNC event

Window Content

● The window is a full scene graph
– Everything you see is an object that persists
– Changes to all objects are stateful

● They retain their state as it was last set

– Rendering is “automatic” after going idle at next VSYNC event
● Hidden/abstracted so acceleration methods can be dramatically changed

Window Content

● The window is a full scene graph
– Everything you see is an object that persists
– Changes to all objects are stateful

● They retain their state as it was last set

– Rendering is “automatic” after going idle at next VSYNC event
● Hidden/abstracted so acceleration methods can be dramatically changed

VSYNC VSYNC VSYNC VSYNC VSYNC

WAKE WAKE WAKE WAKE WAKE WAKE WAKE

SLEEP SLEEP SLEEP SLEEP SLEEP SLEEP SLEEP

RENDER RENDER RENDER

GPU / RENDER THREAD

RENDER RENDER RENDER

MISSED VSYNC MISSED VSYNC

Scene Graph

Scene Graph

● Windows hold a tree of objects

Scene Graph

● Windows hold a tree of objects

● Each object can be a basic object
or a container (Smart Object)

Scene Graph

● Windows hold a tree of objects

● Each object can be a basic object
or a container (Smart Object)
– All objects are stacked and have

geometry (x, y, width & height)

Scene Graph

● Windows hold a tree of objects

● Each object can be a basic object
or a container (Smart Object)
– All objects are stacked and have

geometry (x, y, width & height)
– All child objects stack within the

parent object (recursively)

Scene Graph

● Windows hold a tree of objects

● Each object can be a basic object
or a container (Smart Object)
– All objects are stacked and have

geometry (x, y, width & height)
– All child objects stack within the

parent object (recursively)

● Basic objects
– Rectangle
– Image (images, buffers, proxies)
– Text (single line simple text)
– Textblock (multi-line formatted text)
– Textgrid (for grids of chars)
– Polygon (used for event regions)
– Line (really limited)
– VG (Vector Graphic)
– 3D

Scene Graph Objects

List Item

List Item Next

Another List Item

Yet Another

Getting There

Almost done

Do This Go Away

Heading is Here

Scene Graph Objects

List Item

List Item Next

Another List Item

Yet Another

Getting There

Almost done

Do This Go Away

Heading is Here

List Item

List Item Next

Another List Item

Yet Another

Getting There

Almost done

Do This Go Away

Heading is HereList Item

List Item Next

Another List Item

Yet Another

Getting There

Almost done

Heading is Here

Go Away

Do This

Object Components & Layers

Queue deferred render

Queue deferred render

● All objects retain state

Queue deferred render

● All objects retain state
– Show object once – it stays visible UNTIL hidden

Queue deferred render

● All objects retain state
– Show object once – it stays visible UNTIL hidden
– Set a color of an object – it stays that color until it is changed

Queue deferred render

● All objects retain state
– Show object once – it stays visible UNTIL hidden
– Set a color of an object – it stays that color until it is changed
– Set text of text or textblock object – it shows that text until changed

Queue deferred render

● All objects retain state
– Show object once – it stays visible UNTIL hidden
– Set a color of an object – it stays that color until it is changed
– Set text of text or textblock object – it shows that text until changed

● Rendering is automatic after VSYNC wakeup idle

Queue deferred render

● All objects retain state
– Show object once – it stays visible UNTIL hidden
– Set a color of an object – it stays that color until it is changed
– Set text of text or textblock object – it shows that text until changed

● Rendering is automatic after VSYNC wakeup idle
– Tries to only re-render updated regions / objects

Queue deferred render

● All objects retain state
– Show object once – it stays visible UNTIL hidden
– Set a color of an object – it stays that color until it is changed
– Set text of text or textblock object – it shows that text until changed

● Rendering is automatic after VSYNC wakeup idle
– Tries to only re-render updated regions / objects

VSYNC VSYNC VSYNC VSYNC VSYNC

WAKE

SLEEP

RENDER

WAKE

SLEEP

Queue wakeup for rendering

Wake up and then immediately sleep
on entering idle begin rendering

Already queued

Elementary Widgets

Elementary Widgets

● All widgets (elm widgets) are just smart objects

Elementary Widgets

● All widgets (elm widgets) are just smart objects
– Provide extra behavior semantics

Elementary Widgets

● All widgets (elm widgets) are just smart objects
– Provide extra behavior semantics

● Focus, accessibility, packing, child deletion, …

Elementary Widgets

● All widgets (elm widgets) are just smart objects
– Provide extra behavior semantics

● Focus, accessibility, packing, child deletion, …

– Uses Edje to define some internal layout/look and animation

Evas - OpenGL

Evas - OpenGL

● Use elm_glview widget for OpenGL

Evas - OpenGL

● Use elm_glview widget for OpenGL
– Handles abstraction details of lower level Evas GL APIs

Evas - OpenGL

● Use elm_glview widget for OpenGL
– Handles abstraction details of lower level Evas GL APIs
– Handles correctly switching from direct (zero-copy) or indirect rendering

Evas - OpenGL

● Use elm_glview widget for OpenGL
– Handles abstraction details of lower level Evas GL APIs
– Handles correctly switching from direct (zero-copy) or indirect rendering
– Handles calling your render function when rendering is needed

Evas - OpenGL

● Use elm_glview widget for OpenGL
– Handles abstraction details of lower level Evas GL APIs
– Handles correctly switching from direct (zero-copy) or indirect rendering
– Handles calling your render function when rendering is needed
– Provides portability beyond OpenGL-ES based systems beyond Tizen

Evas - OpenGL

● Use elm_glview widget for OpenGL
– Handles abstraction details of lower level Evas GL APIs
– Handles correctly switching from direct (zero-copy) or indirect rendering
– Handles calling your render function when rendering is needed
– Provides portability beyond OpenGL-ES based systems beyond Tizen

● Works on Desktop OpenGL too (Linux, OSX, SDL)

Evas - OpenGL

● Use elm_glview widget for OpenGL
– Handles abstraction details of lower level Evas GL APIs
– Handles correctly switching from direct (zero-copy) or indirect rendering
– Handles calling your render function when rendering is needed
– Provides portability beyond OpenGL-ES based systems beyond Tizen

● Works on Desktop OpenGL too (Linux, OSX, SDL)
– Gives you an OpenGL-ES 1.1/2.0 API to use across all targets

Evas - OpenGL

● Use elm_glview widget for OpenGL
– Handles abstraction details of lower level Evas GL APIs
– Handles correctly switching from direct (zero-copy) or indirect rendering
– Handles calling your render function when rendering is needed
– Provides portability beyond OpenGL-ES based systems beyond Tizen

● Works on Desktop OpenGL too (Linux, OSX, SDL)
– Gives you an OpenGL-ES 1.1/2.0 API to use across all targets

– You can have multiple GL Views in a window

Evas - OpenGL

● Use elm_glview widget for OpenGL
– Handles abstraction details of lower level Evas GL APIs
– Handles correctly switching from direct (zero-copy) or indirect rendering
– Handles calling your render function when rendering is needed
– Provides portability beyond OpenGL-ES based systems beyond Tizen

● Works on Desktop OpenGL too (Linux, OSX, SDL)
– Gives you an OpenGL-ES 1.1/2.0 API to use across all targets

– You can have multiple GL Views in a window
● Even inside lists, scrollers

Evas - OpenGL

● Use elm_glview widget for OpenGL
– Handles abstraction details of lower level Evas GL APIs
– Handles correctly switching from direct (zero-copy) or indirect rendering
– Handles calling your render function when rendering is needed
– Provides portability beyond OpenGL-ES based systems beyond Tizen

● Works on Desktop OpenGL too (Linux, OSX, SDL)
– Gives you an OpenGL-ES 1.1/2.0 API to use across all targets

– You can have multiple GL Views in a window
● Even inside lists, scrollers
● Mixed with other standard widgets and objects that can be used for game HUD

Containers & Scaling

● EFL loves containers

Containers & Scaling

● EFL loves containers
– You put a Conformant in a Window

Containers & Scaling

● EFL loves containers
– You put a Conformant in a Window
– You put a Naviframe in a Conformant

Containers & Scaling

● EFL loves containers
– You put a Conformant in a Window
– You put a Naviframe in a Conformant
– You add a Naviframe page
– You put a Table in the Naviframe page

Containers & Scaling

● EFL loves containers
– You put a Conformant in a Window
– You put a Naviframe in a Conformant
– You add a Naviframe page
– You put a Table in the Naviframe page
– You put Entries in the Table

Containers & Scaling

● EFL loves containers
– You put a Conformant in a Window
– You put a Naviframe in a Conformant
– You add a Naviframe page
– You put a Table in the Naviframe page
– You put Entries in the Table
– You put Buttons in the Table

Containers & Scaling

● EFL loves containers
– You put a Conformant in a Window
– You put a Naviframe in a Conformant
– You add a Naviframe page
– You put a Table in the Naviframe page
– You put Entries in the Table
– You put Buttons in the Table
– You put and Icon in the Button

Containers & Scaling

● EFL loves containers
– You put a Conformant in a Window
– You put a Naviframe in a Conformant
– You add a Naviframe page
– You put a Table in the Naviframe page
– You put Entries in the Table
– You put Buttons in the Table
– You put and Icon in the Button

● If you use containers correctly, your UI can scale AND resize properly

Containers & Scaling

● EFL loves containers
– You put a Conformant in a Window
– You put a Naviframe in a Conformant
– You add a Naviframe page
– You put a Table in the Naviframe page
– You put Entries in the Table
– You put Buttons in the Table
– You put and Icon in the Button

● If you use containers correctly, your UI can scale AND resize properly
– This is like HTML with <DIV> in a <DIV> in a <TABLE> in a …

Size Hinting

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0 0.0
Align 0.5 0.5

Weight 1.0 0.0
Align 0.5 0.5

Weight 1.0 1.0
Align 0.5 0.5

Weight 1.0 1.0
Align 1.0 -1

Weight 1.0 1.0
Align 0.0 1.0

Defaults

-1 = FILL

Size Hinting

● Parent Widget decides how to
arrange children

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0 0.0
Align 0.5 0.5

Weight 1.0 0.0
Align 0.5 0.5

Weight 1.0 1.0
Align 0.5 0.5

Weight 1.0 1.0
Align 1.0 -1

Weight 1.0 1.0
Align 0.0 1.0

Defaults

-1 = FILL

Size Hinting

● Parent Widget decides how to
arrange children
– Different parents have different

rules

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0 0.0
Align 0.5 0.5

Weight 1.0 0.0
Align 0.5 0.5

Weight 1.0 1.0
Align 0.5 0.5

Weight 1.0 1.0
Align 1.0 -1

Weight 1.0 1.0
Align 0.0 1.0

Defaults

-1 = FILL

Size Hinting

● Parent Widget decides how to
arrange children
– Different parents have different

rules

● Object hints determine if a child fills
an/or expands its allocated area

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0 0.0
Align 0.5 0.5

Weight 1.0 0.0
Align 0.5 0.5

Weight 1.0 1.0
Align 0.5 0.5

Weight 1.0 1.0
Align 1.0 -1

Weight 1.0 1.0
Align 0.0 1.0

Defaults

-1 = FILL

Size Hinting

● Parent Widget decides how to
arrange children
– Different parents have different

rules

● Object hints determine if a child fills
an/or expands its allocated area
– Align and Weight do this

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0 0.0
Align 0.5 0.5

Weight 1.0 0.0
Align 0.5 0.5

Weight 1.0 1.0
Align 0.5 0.5

Weight 1.0 1.0
Align 1.0 -1

Weight 1.0 1.0
Align 0.0 1.0

Defaults

-1 = FILL

Size Hinting

● Parent Widget decides how to
arrange children
– Different parents have different

rules

● Object hints determine if a child fills
an/or expands its allocated area
– Align and Weight do this
– Some widgets ONLY use Weight

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0 0.0
Align 0.5 0.5

Weight 1.0 0.0
Align 0.5 0.5

Weight 1.0 1.0
Align 0.5 0.5

Weight 1.0 1.0
Align 1.0 -1

Weight 1.0 1.0
Align 0.0 1.0

Defaults

-1 = FILL

Size Hinting

● Parent Widget decides how to
arrange children
– Different parents have different

rules

● Object hints determine if a child fills
an/or expands its allocated area
– Align and Weight do this
– Some widgets ONLY use Weight
– Objects do NOT Fill and do NOT

Expand by default

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0 0.0
Align 0.5 0.5

Weight 1.0 0.0
Align 0.5 0.5

Weight 1.0 1.0
Align 0.5 0.5

Weight 1.0 1.0
Align 1.0 -1

Weight 1.0 1.0
Align 0.0 1.0

Defaults

-1 = FILL

Size Hinting

● Window, Conformant, Part content (Layouts and other widgets)
– Use only Weight

Size Hinting

● Window, Conformant, Part content (Layouts and other widgets)
– Use only Weight

● Everything else uses both Weight and Align

Size Hinting

● Window, Conformant, Part content (Layouts and other widgets)
– Use only Weight

● Everything else uses both Weight and Align
● All elm widgets control their own min size

Size Hinting

● Window, Conformant, Part content (Layouts and other widgets)
– Use only Weight

● Everything else uses both Weight and Align
● All elm widgets control their own min size EXCEPT

– Grids never calculate their own min size – you may control it

Size Hinting

● Window, Conformant, Part content (Layouts and other widgets)
– Use only Weight

● Everything else uses both Weight and Align
● All elm widgets control their own min size EXCEPT

– Grids never calculate their own min size – you may control it
– GLview never calculates its own size

Size Hinting

● Window, Conformant, Part content (Layouts and other widgets)
– Use only Weight

● Everything else uses both Weight and Align
● All elm widgets control their own min size EXCEPT

– Grids never calculate their own min size – you may control it
– GLview never calculates its own size

● Never set min (or max) size if already controlled by object

Min Size Control Trick

Min Size Control Trick

● Make Elm Table
Table

Min Size Control Trick

● Make Elm Table
● Make Evas Rectangle (do not show it)
● Pack Rectangle at 0, 0, 1x1

Table

Rectangle

Other Widget

Min Size Control Trick

● Make Elm Table
● Make Evas Rectangle (do not show it)
● Pack Rectangle at 0, 0, 1x1
● Create other widget you want to control min size of
● Pack other widget in same Table at 0, 0, 1x1

Table

Rectangle

Other Widget

Min Size Control Trick

● Make Elm Table
● Make Evas Rectangle (do not show it)
● Pack Rectangle at 0, 0, 1x1
● Create other widget you want to control min size of
● Pack other widget in same Table at 0, 0, 1x1
● Set min size desired on Rectangle

Table

Rectangle

Other Widget

Min Size Control Trick

● Make Elm Table
● Make Evas Rectangle (do not show it)
● Pack Rectangle at 0, 0, 1x1
● Create other widget you want to control min size of
● Pack other widget in same Table at 0, 0, 1x1
● Set min size desired on Rectangle
● This gives a second control point (Rectangle object) to set hints on.

Table

Rectangle

Other Widget

Manual Positioning

Manual Positioning

● You can manually move/resize widgets and objects, BUT…

Manual Positioning

● You can manually move/resize widgets and objects, BUT…
– Increases the work to handle multiple orientations, resolutions etc.

Manual Positioning

● You can manually move/resize widgets and objects, BUT…
– Increases the work to handle multiple orientations, resolutions etc.
– This should be RARE

Manual Positioning

● You can manually move/resize widgets and objects, BUT…
– Increases the work to handle multiple orientations, resolutions etc.
– This should be RARE
– If you do, YOU are in charge of layout handling, scaling, window resizes etc.

Manual Positioning

● You can manually move/resize widgets and objects, BUT…
– Increases the work to handle multiple orientations, resolutions etc.
– This should be RARE
– If you do, YOU are in charge of layout handling, scaling, window resizes etc.

● This dramatically increases YOUR workload

Manual Positioning

● You can manually move/resize widgets and objects, BUT…
– Increases the work to handle multiple orientations, resolutions etc.
– This should be RARE
– If you do, YOU are in charge of layout handling, scaling, window resizes etc.

● This dramatically increases YOUR workload

– Should only be needed for very specific cases when special results are needed

Manual Positioning

● You can manually move/resize widgets and objects, BUT…
– Increases the work to handle multiple orientations, resolutions etc.
– This should be RARE
– If you do, YOU are in charge of layout handling, scaling, window resizes etc.

● This dramatically increases YOUR workload

– Should only be needed for very specific cases when special results are needed
– Creates issues for Accessibility and Focus Movement

Manual Positioning

● You can manually move/resize widgets and objects, BUT…
– Increases the work to handle multiple orientations, resolutions etc.
– This should be RARE
– If you do, YOU are in charge of layout handling, scaling, window resizes etc.

● This dramatically increases YOUR workload

– Should only be needed for very specific cases when special results are needed
– Creates issues for Accessibility and Focus Movement

● You may have to manage a Focus chain by hand if you do this

Manual Positioning

● You can manually move/resize widgets and objects, BUT…
– Increases the work to handle multiple orientations, resolutions etc.
– This should be RARE
– If you do, YOU are in charge of layout handling, scaling, window resizes etc.

● This dramatically increases YOUR workload

– Should only be needed for very specific cases when special results are needed
– Creates issues for Accessibility and Focus Movement

● You may have to manage a Focus chain by hand if you do this

● This can be useful for effects or unusual UIs

Manual Positioning

● You can manually move/resize widgets and objects, BUT…
– Increases the work to handle multiple orientations, resolutions etc.
– This should be RARE
– If you do, YOU are in charge of layout handling, scaling, window resizes etc.

● This dramatically increases YOUR workload

– Should only be needed for very specific cases when special results are needed
– Creates issues for Accessibility and Focus Movement

● You may have to manage a Focus chain by hand if you do this

● This can be useful for effects or unusual UIs
● Not recommended unless you enjoy … The way of PAIN

Evas/Elm Object Lifecycle

Evas/Elm Object Lifecycle

● After objects are created (added)

Evas/Elm Object Lifecycle

● After objects are created (added)
– Can listen for deletion:

void func_to_call_on_del(void *data, Evas *e, Evas_Object *obj, void *info) {

 printf(“object %p deleted, data is %p\n”, obj, data);

}

evas_object_vevent_callback_add(obj, EVAS_CALLBACK_DEL, func_to_call_on_del, data_pointer_for_func);

Evas/Elm Object Lifecycle

● After objects are created (added)
– Can listen for deletion:

void func_to_call_on_del(void *data, Evas *e, Evas_Object *obj, void *info) {

 printf(“object %p deleted, data is %p\n”, obj, data);

}

evas_object_vevent_callback_add(obj, EVAS_CALLBACK_DEL, func_to_call_on_del, data_pointer_for_func);

● You can attach key pointer values to any object→
evas_object_data_set(obj, “mykey”, mypointer);

evas_object_data_del(obj, “mykey”);

mypointer = evas_object_data_get(obj, “mykey”);

Evas/Elm Object Lifecycle

● After objects are created (added)
– Can listen for deletion:

void func_to_call_on_del(void *data, Evas *e, Evas_Object *obj, void *info) {

 printf(“object %p deleted, data is %p\n”, obj, data);

}

evas_object_vevent_callback_add(obj, EVAS_CALLBACK_DEL, func_to_call_on_del, data_pointer_for_func);

● You can attach key pointer values to any object→
evas_object_data_set(obj, “mykey”, mypointer);

evas_object_data_del(obj, “mykey”);

mypointer = evas_object_data_get(obj, “mykey”);

● Can be used for extending an object - Poor-mans-objects

Evas/Elm Object Lifecycle

● After objects are created (added)
– Can listen for deletion:

void func_to_call_on_del(void *data, Evas *e, Evas_Object *obj, void *info) {

 printf(“object %p deleted, data is %p\n”, obj, data);

}

evas_object_vevent_callback_add(obj, EVAS_CALLBACK_DEL, func_to_call_on_del, data_pointer_for_func);

● You can attach key pointer values to any object→
evas_object_data_set(obj, “mykey”, mypointer);

evas_object_data_del(obj, “mykey”);

mypointer = evas_object_data_get(obj, “mykey”);

● Can be used for extending an object - Poor-mans-objects
– Set/get extra data to store/access

Evas/Elm Object Lifecycle

● After objects are created (added)
– Can listen for deletion:

void func_to_call_on_del(void *data, Evas *e, Evas_Object *obj, void *info) {

 printf(“object %p deleted, data is %p\n”, obj, data);

}

evas_object_vevent_callback_add(obj, EVAS_CALLBACK_DEL, func_to_call_on_del, data_pointer_for_func);

● You can attach key pointer values to any object→
evas_object_data_set(obj, “mykey”, mypointer);

evas_object_data_del(obj, “mykey”);

mypointer = evas_object_data_get(obj, “mykey”);

● Can be used for extending an object - Poor-mans-objects
– Set/get extra data to store/access
– On delete, delete any data needing deletion

Other Events

● Can also listen to many other events on objects:

Other Events

● Can also listen to many other events on objects:
…

EVAS_CALLBACK_DEL

EVAS_CALLBACK_SHOW

EVAS_CALLBACK_HIDE

EVAS_CALLBACK_MOVE

EVAS_CALLBACK_RESIZE

EVAS_CALLBACK_RESTACK

EVAS_CALLBACK_CHANGED_SIZE_HINTS

EVAS_CALLBACK_IMAGE_PRELOADED

…

Dynamic Image Content

Dynamic Image Content

● You can modify pixel data of an Image

Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

– Each update after that, get data, modify, set data, add update:
unsigned int *pixels = evas_object_image_data_get(obj, EINA_TRUE);

int stride = evas_obj_image_stride_get(obj);

// modify “pixels” with each row of pixels being “stride” bytes

evas_object_image_data_set(obj, pixels);

evas_object_image_update_add(obj, 0, 0, 600, 400);

Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

– Each update after that, get data, modify, set data, add update:
unsigned int *pixels = evas_object_image_data_get(obj, EINA_TRUE);

int stride = evas_obj_image_stride_get(obj);

// modify “pixels” with each row of pixels being “stride” bytes

evas_object_image_data_set(obj, pixels);

evas_object_image_update_add(obj, 0, 0, 600, 400);

● ALWAYS GET THEN SET. Not doing so will lead to bugs

Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

– Each update after that, get data, modify, set data, add update:
unsigned int *pixels = evas_object_image_data_get(obj, EINA_TRUE);

int stride = evas_obj_image_stride_get(obj);

// modify “pixels” with each row of pixels being “stride” bytes

evas_object_image_data_set(obj, pixels);

evas_object_image_update_add(obj, 0, 0, 600, 400);

● ALWAYS GET THEN SET. Not doing so will lead to bugs

– If you modify pixel data OFTEN then you should do this before setting size above

Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

– Each update after that, get data, modify, set data, add update:
unsigned int *pixels = evas_object_image_data_get(obj, EINA_TRUE);

int stride = evas_obj_image_stride_get(obj);

// modify “pixels” with each row of pixels being “stride” bytes

evas_object_image_data_set(obj, pixels);

evas_object_image_update_add(obj, 0, 0, 600, 400);

● ALWAYS GET THEN SET. Not doing so will lead to bugs

– If you modify pixel data OFTEN then you should do this before setting size above
● evas_obj_image_content_hint_set(obj, EVAS_IMAGE_CONTENT_HINT_DYNAMIC)

Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

– Each update after that, get data, modify, set data, add update:
unsigned int *pixels = evas_object_image_data_get(obj, EINA_TRUE);

int stride = evas_obj_image_stride_get(obj);

// modify “pixels” with each row of pixels being “stride” bytes

evas_object_image_data_set(obj, pixels);

evas_object_image_update_add(obj, 0, 0, 600, 400);

● ALWAYS GET THEN SET. Not doing so will lead to bugs

– If you modify pixel data OFTEN then you should do this before setting size above
● evas_obj_image_content_hint_set(obj, EVAS_IMAGE_CONTENT_HINT_DYNAMIC)

● This will try and use zero-copy for textures with OpenGL, SW is always zero-copy

Dynamic Image Content

● Pixels by default are ARGB8888 premultiplied Alpha

Dynamic Image Content

● Pixels by default are ARGB8888 premultiplied Alpha
– Alpha as MSB, Blue LSB per 32bit “integer” word

A = (pixel >> 24) & 0xff

R = (pixel >> 16) & 0xff

G = (pixel >> 8) & 0xff

B = pixel & 0xff

Dynamic Image Content

● Pixels by default are ARGB8888 premultiplied Alpha
– Alpha as MSB, Blue LSB per 32bit “integer” word

A = (pixel >> 24) & 0xff

R = (pixel >> 16) & 0xff

G = (pixel >> 8) & 0xff

B = pixel & 0xff

– Premultiplied Alpha is where R, G and B are multipled by A
R = R * A; // conceptually if RGBA are 0.0 to 1.0

G = G * A; // conceptually if RGBA are 0.0 to 1.0

B = B * A; // conceptually if RGBA are 0.0 to 1.0

Dynamic Image Content

● Pixels by default are ARGB8888 premultiplied Alpha
– Alpha as MSB, Blue LSB per 32bit “integer” word

A = (pixel >> 24) & 0xff

R = (pixel >> 16) & 0xff

G = (pixel >> 8) & 0xff

B = pixel & 0xff

– Premultiplied Alpha is where R, G and B are multipled by A
R = R * A; // conceptually if RGBA are 0.0 to 1.0

G = G * A; // conceptually if RGBA are 0.0 to 1.0

B = B * A; // conceptually if RGBA are 0.0 to 1.0

– Premultiplied Alpha produces correct results when scaling unlike non-premul

Dynamic Image Content

● Pixels by default are ARGB8888 premultiplied Alpha
– Alpha as MSB, Blue LSB per 32bit “integer” word

A = (pixel >> 24) & 0xff

R = (pixel >> 16) & 0xff

G = (pixel >> 8) & 0xff

B = pixel & 0xff

– Premultiplied Alpha is where R, G and B are multipled by A
R = R * A; // conceptually if RGBA are 0.0 to 1.0

G = G * A; // conceptually if RGBA are 0.0 to 1.0

B = B * A; // conceptually if RGBA are 0.0 to 1.0

– Premultiplied Alpha produces correct results when scaling unlike non-premul
– Premultiplied Alpha is faster in software rendering

Dynamic Image Content

● Pixels by default are ARGB8888 premultiplied Alpha
– Alpha as MSB, Blue LSB per 32bit “integer” word

A = (pixel >> 24) & 0xff

R = (pixel >> 16) & 0xff

G = (pixel >> 8) & 0xff

B = pixel & 0xff

– Premultiplied Alpha is where R, G and B are multipled by A
R = R * A; // conceptually if RGBA are 0.0 to 1.0

G = G * A; // conceptually if RGBA are 0.0 to 1.0

B = B * A; // conceptually if RGBA are 0.0 to 1.0

– Premultiplied Alpha produces correct results when scaling unlike non-premul
– Premultiplied Alpha is faster in software rendering
– Premultiplied Alpha always produces correct destination buffer Alpha

Object Costs

Object Costs

● More objects cost more overhead

Object Costs

● More objects cost more overhead
– All objects have to be walked to look for changes at render

Object Costs

● More objects cost more overhead
– All objects have to be walked to look for changes at render
– All objects have to be walked to render them (and clip them)

Object Costs

● More objects cost more overhead
– All objects have to be walked to look for changes at render
– All objects have to be walked to render them (and clip them)
– Objects cost memory

Object Costs

● More objects cost more overhead
– All objects have to be walked to look for changes at render
– All objects have to be walked to render them (and clip them)
– Objects cost memory

● So … keep number of objects down where possible

Object Costs

● More objects cost more overhead
– All objects have to be walked to look for changes at render
– All objects have to be walked to render them (and clip them)
– Objects cost memory

● So … keep number of objects down where possible
– Widgets like Elm Genlist and Gengrid do this for you for all Items

Object Costs

● More objects cost more overhead
– All objects have to be walked to look for changes at render
– All objects have to be walked to render them (and clip them)
– Objects cost memory

● So … keep number of objects down where possible
– Widgets like Elm Genlist and Gengrid do this for you for all Items

● An Item is a very minimal piece of data acting as placeholder for an item

Object Costs

● More objects cost more overhead
– All objects have to be walked to look for changes at render
– All objects have to be walked to render them (and clip them)
– Objects cost memory

● So … keep number of objects down where possible
– Widgets like Elm Genlist and Gengrid do this for you for all Items

● An Item is a very minimal piece of data acting as placeholder for an item

– Do not abuse Genlist and Gengrid for generic scrollable UIs

“Infinite Scrolling” Trick

“Infinite Scrolling” Trick

● Add a Scroller

Canvas
Viewport

Listen to VIEWPORT_RESIZE
callbacks on Evas Canvas

Object

0,0 width x height

“Infinite Scrolling” Trick

● Add a Scroller
– Add a Box or Table

Canvas
Viewport

Listen to VIEWPORT_RESIZE
callbacks on Evas Canvas

Object

0,0 width x height

“Infinite Scrolling” Trick

● Add a Scroller
– Add a Box or Table
– Set content of Scroller to Box/Table

Canvas
Viewport

Listen to VIEWPORT_RESIZE
callbacks on Evas Canvas

Object

0,0 width x height

“Infinite Scrolling” Trick

● Add a Scroller
– Add a Box or Table
– Set content of Scroller to Box/Table

● Divide Table or Box into 3 regions
Canvas
Viewport

Listen to VIEWPORT_RESIZE
callbacks on Evas Canvas

Object

0,0 width x height

“Infinite Scrolling” Trick

● Add a Scroller
– Add a Box or Table
– Set content of Scroller to Box/Table

● Divide Table or Box into 3 regions
– Above
– Visible
– Below

Above

Below

Visible

Canvas
Viewport

Listen to VIEWPORT_RESIZE
callbacks on Evas Canvas

Object

0,0 width x height

“Infinite Scrolling” Trick

● Add a Scroller
– Add a Box or Table
– Set content of Scroller to Box/Table

● Divide Table or Box into 3 regions
– Above
– Visible
– Below

● Track geometry of “dummy
rectangles” in Above/Below

Above

Below

Visible

Canvas
Viewport

Listen to MOVE and RESIZE
callbacks on “invisible rectangle”

Listen to MOVE and RESIZE
callbacks on “visible” object(s)

Listen to MOVE and RESIZE
callbacks on “invisible rectangle”

Listen to VIEWPORT_RESIZE
callbacks on Evas Canvas

Object

0,0 width x height

“Infinite Scrolling” Trick

● Add a Scroller
– Add a Box or Table
– Set content of Scroller to Box/Table

● Divide Table or Box into 3 regions
– Above
– Visible
– Below

● Track geometry of “dummy
rectangles” in Above/Below
– Replace/insert as needed

Above

Below

Visible

Canvas
Viewport

Listen to MOVE and RESIZE
callbacks on “invisible rectangle”

Listen to MOVE and RESIZE
callbacks on “visible” object(s)

Listen to MOVE and RESIZE
callbacks on “invisible rectangle”

Listen to VIEWPORT_RESIZE
callbacks on Evas Canvas

Object

0,0 width x height

“Infinite Scrolling” Trick

● Add a Scroller
– Add a Box or Table
– Set content of Scroller to Box/Table

● Divide Table or Box into 3 regions
– Above
– Visible
– Below

● Track geometry of “dummy
rectangles” in Above/Below
– Replace/insert as needed
– Adjust min size of above/below

Above

Below

Visible

Canvas
Viewport

Listen to MOVE and RESIZE
callbacks on “invisible rectangle”

Listen to MOVE and RESIZE
callbacks on “visible” object(s)

Listen to MOVE and RESIZE
callbacks on “invisible rectangle”

Listen to VIEWPORT_RESIZE
callbacks on Evas Canvas

Object

0,0 width x height

“Infinite Scrolling” Trick

● The less content you create when the region becomes visible

“Infinite Scrolling” Trick

● The less content you create when the region becomes visible
– The smoother things will be

“Infinite Scrolling” Trick

● The less content you create when the region becomes visible
– The smoother things will be

● Remember to delete content as it exits the viewport too

“Infinite Scrolling” Trick

● The less content you create when the region becomes visible
– The smoother things will be

● Remember to delete content as it exits the viewport too
● Remember to track viewport changes

“Infinite Scrolling” Trick

● The less content you create when the region becomes visible
– The smoother things will be

● Remember to delete content as it exits the viewport too
● Remember to track viewport changes

– Windows in Tizen CAN RESIZE

“Infinite Scrolling” Trick

● The less content you create when the region becomes visible
– The smoother things will be

● Remember to delete content as it exits the viewport too
● Remember to track viewport changes

– Windows in Tizen CAN RESIZE
● It is a multi-windowed system without fixed sizes, just like a desktop UI

“Infinite Scrolling” Trick

● The less content you create when the region becomes visible
– The smoother things will be

● Remember to delete content as it exits the viewport too
● Remember to track viewport changes

– Windows in Tizen CAN RESIZE
● It is a multi-windowed system without fixed sizes, just like a desktop UI

● Consider loading content data (text labels, other I/O) in threads

“Infinite Scrolling” Trick

● The less content you create when the region becomes visible
– The smoother things will be

● Remember to delete content as it exits the viewport too
● Remember to track viewport changes

– Windows in Tizen CAN RESIZE
● It is a multi-windowed system without fixed sizes, just like a desktop UI

● Consider loading content data (text labels, other I/O) in threads
– Queue/begin this thread worker when visiblity happens

“Infinite Scrolling” Trick

● The less content you create when the region becomes visible
– The smoother things will be

● Remember to delete content as it exits the viewport too
● Remember to track viewport changes

– Windows in Tizen CAN RESIZE
● It is a multi-windowed system without fixed sizes, just like a desktop UI

● Consider loading content data (text labels, other I/O) in threads
– Queue/begin this thread worker when visiblity happens
– Create widgets with “dummy” content (eg blank labels)

“Infinite Scrolling” Trick

● The less content you create when the region becomes visible
– The smoother things will be

● Remember to delete content as it exits the viewport too
● Remember to track viewport changes

– Windows in Tizen CAN RESIZE
● It is a multi-windowed system without fixed sizes, just like a desktop UI

● Consider loading content data (text labels, other I/O) in threads
– Queue/begin this thread worker when visiblity happens
– Create widgets with “dummy” content (eg blank labels)
– Fill text/content once thread is done

Widget Styles

Widget Styles

● All widgets support styles

Widget Styles

● All widgets support styles except
– Box, Table, Grid

Widget Styles

● All widgets support styles except
– Box, Table, Grid

● Styles allow custiomizing of widget look

Widget Styles

● All widgets support styles except
– Box, Table, Grid

● Styles allow custiomizing of widget look
● You can make new custom styles of your own

Widget Styles

● All widgets support styles except
– Box, Table, Grid

● Styles allow custiomizing of widget look
● You can make new custom styles of your own
● Themes are in EDJ Files (Edje collections of groups)

Widget Styles

● All widgets support styles except
– Box, Table, Grid

● Styles allow custiomizing of widget look
● You can make new custom styles of your own
● Themes are in EDJ Files (Edje collections of groups)
● Custom styles are generally a bad idea because application will not fit in

Widget Styles

● All widgets support styles except
– Box, Table, Grid

● Styles allow custiomizing of widget look
● You can make new custom styles of your own
● Themes are in EDJ Files (Edje collections of groups)
● Custom styles are generally a bad idea because application will not fit in
● Use extensions instead of overlays

Widget Styles

● All widgets support styles except
– Box, Table, Grid

● Styles allow custiomizing of widget look
● You can make new custom styles of your own
● Themes are in EDJ Files (Edje collections of groups)
● Custom styles are generally a bad idea because application will not fit in
● Use extensions instead of overlays

– Add new styles instead of override

Theme Style Lookup

Group2 Group4 Group5

Group1 Group2 Group4

Group1 Group2 Group3

Group4 Group5

Overlay Theme

System Theme

Default Theme

Extension Theme

Lookup for Group1 Lookup for Group2Lookup for Group1 Lookup for Group3 Lookup for Group4 Lookup for Group5

Edje – Graphical Blobs

Edje – Graphical Blobs

● What Edje is

Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

● Multiple layers

Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

● Multiple layers
● Layers can move/resize/show/hide/change color & transparency

Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

● Multiple layers
● Layers can move/resize/show/hide/change color & transparency
● Layers can point to image data to use, be text or rectangles

Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

● Multiple layers
● Layers can move/resize/show/hide/change color & transparency
● Layers can point to image data to use, be text or rectangles
● The stored states of layers can be changed in response to signals (e.g from events or app)

Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

● Multiple layers
● Layers can move/resize/show/hide/change color & transparency
● Layers can point to image data to use, be text or rectangles
● The stored states of layers can be changed in response to signals (e.g from events or app)
● State changes can animate by interpolating between states

Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

● Multiple layers
● Layers can move/resize/show/hide/change color & transparency
● Layers can point to image data to use, be text or rectangles
● The stored states of layers can be changed in response to signals (e.g from events or app)
● State changes can animate by interpolating between states

● What Edje is NOT

Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

● Multiple layers
● Layers can move/resize/show/hide/change color & transparency
● Layers can point to image data to use, be text or rectangles
● The stored states of layers can be changed in response to signals (e.g from events or app)
● State changes can animate by interpolating between states

● What Edje is NOT
– An application UI design system

Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

● Multiple layers
● Layers can move/resize/show/hide/change color & transparency
● Layers can point to image data to use, be text or rectangles
● The stored states of layers can be changed in response to signals (e.g from events or app)
● State changes can animate by interpolating between states

● What Edje is NOT
– An application UI design system
– A widget layout system

Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

● Multiple layers
● Layers can move/resize/show/hide/change color & transparency
● Layers can point to image data to use, be text or rectangles
● The stored states of layers can be changed in response to signals (e.g from events or app)
● State changes can animate by interpolating between states

● What Edje is NOT
– An application UI design system
– A widget layout system
– A chicken

EDC

collections {
 images {
 image: "icon.png" LOSSY 80; // encode icon.png with lossy 80% quality
 }
 group { name: "my/group"; // name of this group int he collections
 parts {
 part { name: "base"; type: RECT; // a "base" part that is a rect
 description { state: "default" 0.0; // the default state
 color: 255 128 0 255; // orange
 }
 description { state: "active" 0.0; // an active state
 color: 255 255 0 255; // yellow
 }
 }
 part { name: "icon"; // icon part - default type is image
 description { state: "default" 0.0; // the default state
 rel2.relative: 0.5 1.0; // rel2 (bottom right) relative to middle
 image.normal: "icon.png";
 }
 }
 part { name: "label"; type: TEXT; // label part
 description { state: "default" 0.0; // the default state
 rel1.to: "icon"; // top-left relative to the icon
 rel1.relative: 1.0 0.0; // relative to top-right of icon
 color: 255 255 255 255; // white
 text.font: "Sans"; text.size: 10; // 10 px Sans font
 text.text: "Hello"; // text content to show
 }
 description { state: "active" 0.0; // an active state
 inherit: "default" 0.0; // copy state from default then modify
 color: 0 0 0 255; // black
 text.text: "Clicked"; // a new text label
 }
 }
 }

 programs {
 program { // when mouse button 1 is down on label
 signal: "mouse,down,1"; source: "label";
 action: STATE_SET "active" 0.0; // set state to active
 transition: SINUSOIDAL 0.5; // over 0.5 sec with sinusoidal interp
 target: "label"; // do it to label
 target: "base"; // do it to base
 }
 program { // when mouse button 1 is released on label
 signal: "mouse,up,1"; source: "label";
 action: STATE_SET "default" 0.0; // set state to default
 transition: SINUSOIDAL 1.0; // over 1 sec with sinusoidal interp
 target: "label"; // do it to label
 target: "base"; // do it to base
 }
 }
 }
}

Layer

Layer

Layer

Edje – Graphical Blobs

● Edje has been extended over many years

Edje – Graphical Blobs

● Edje has been extended over many years
● Recently tools like Enventor (ships with Tizen 2.4 SDK) give you a GUI

editing tool

Edje – Graphical Blobs

● Edje has been extended over many years
● Recently tools like Enventor (ships with Tizen 2.4 SDK) give you a GUI

editing tool
– Gives you rapid feedback on your changes to save a lot of time and effort

Edje – Graphical Blobs

● Edje has been extended over many years
● Recently tools like Enventor (ships with Tizen 2.4 SDK) give you a GUI

editing tool
– Gives you rapid feedback on your changes to save a lot of time and effort
– Eflete is even better and is almost pure-GUI EDJE file editing

Edje – Graphical Blobs

● Edje has been extended over many years
● Recently tools like Enventor (ships with Tizen 2.4 SDK) give you a GUI

editing tool
– Gives you rapid feedback on your changes to save a lot of time and effort
– Eflete is even better and is almost pure-GUI EDJE file editing

● Coming in future – you can download source from git.enlightenment.org

Edje – Graphical Blobs

● Edje has been extended over many years
● Recently tools like Enventor (ships with Tizen 2.4 SDK) give you a GUI

editing tool
– Gives you rapid feedback on your changes to save a lot of time and effort
– Eflete is even better and is almost pure-GUI EDJE file editing

● Coming in future – you can download source from git.enlightenment.org

● EDC files go through CPP so you can use #include, #define, #ifdef etc.

EDC

#define IMAGE(x) images.image: x LOSSY 80
#define DEF “default” 0.0
#define ACT “active” 0.0
#define TRANS(x) SINUSOIDAL x
#define TARGETS target: “label”; target: “base”
#define SIGSRC(x, y) signal: x; source: x
collections {
 IMAGE(“icon.png”);
 group { name: "my/group";
 parts {
 part { name: "base"; type: RECT; // a "base" part that is a rect
 description { state: DEF;
 color: 255 128 0 255; // orange
 }
 description { state: ACT; // an active state
 color: 255 255 0 255; // yellow
 }
 }
 part { name: "icon"; // icon part - default type is image
 description { state: DEF;
 rel2.relative: 0.5 1.0; // rel2 (bottom right) relative to middle
 image.normal: "icon.png";
 }
 }
 part { name: "label"; type: TEXT; // label part
 description { state: "default" 0.0; // the default state
 rel1.to: "icon"; // top-left relative to the icon
 rel1.relative: 1.0 0.0; // relative to top-right of icon
 color: 255 255 255 255; // white
 text.font: "Sans"; text.size: 10; // 10 px Sans font
 text.text: "Hello"; // text content to show
 }
 description { state: ACT; // an active state
 inherit: "default" 0.0; // copy state from default then modify
 color: 0 0 0 255; // black
 text.text: "Clicked"; // a new text label
 }
 }
 }

 programs {
 program { SIGSRC(“mouse,down,1”, “label”);
 action: STATE_SET ACT; // set state to active
 transition: TRANS(0.5); // over 0.5 sec with sinusoidal interp
 TARGETS;
 }
 program { SIGSRC(“mouse,up,1”, “label”);
 action: STATE_SET DEF; // set state to default
 transition: TRANS(1.0);
 TARGETS;
 }
 }
 }
}

Last - 3D Effects

You don't need OpenGL

2.5D Mapping

● You can do 2.5D/3D effects on any object

2.5D Mapping

● You can do 2.5D/3D effects on any object
● With imagination you can do 3D simple 3D objects with multiple maps

2.5D Mapping

● You can do 2.5D/3D effects on any object
● With imagination you can do 3D simple 3D objects with multiple maps

2.5D Mapping

● You can do 2.5D/3D effects on any object
● With imagination you can do 3D simple 3D objects with multiple maps

2.5D Mapping

Evas_Map *m = evas_map_new(4); // new 4 point map – only 4 points are actually guaranteed to work

evas_map_util_points_populate_from_object(m, obj); // fill map points from current object geometry

evas_map_util_3d_rotate(m, 30.0, 20.0, 10.0, center_x, center_y, 0); // rotate map around a center point

evas_map_util_3d_perspective(m, center_screen_x, center_screen_y, 0, pixels_from_camera_to_screen_plane);

evas_object_map_set(obj, m); // set map for this object

evas_map_free(m); // free it – object will retain a reference and release when it is done

evas_object_map_enable_set(obj, EINA_TRUE); // enable the map that is set

2.5D Mapping

Evas_Map *m = evas_map_new(4); // new 4 point map – only 4 points are actually guaranteed to work

evas_map_util_points_populate_from_object(m, obj); // fill map points from current object geometry

evas_map_util_3d_rotate(m, 30.0, 20.0, 10.0, center_x, center_y, 0); // rotate map around a center point

evas_map_util_3d_perspective(m, center_screen_x, center_screen_y, 0, pixels_from_camera_to_screen_plane);

evas_object_map_set(obj, m); // set map for this object

evas_map_free(m); // free it – object will retain a reference and release when it is done

evas_object_map_enable_set(obj, EINA_TRUE); // enable the map that is set

● Many more ways to use maps to “map an object somewhere else”

2.5D Mapping

Evas_Map *m = evas_map_new(4); // new 4 point map – only 4 points are actually guaranteed to work

evas_map_util_points_populate_from_object(m, obj); // fill map points from current object geometry

evas_map_util_3d_rotate(m, 30.0, 20.0, 10.0, center_x, center_y, 0); // rotate map around a center point

evas_map_util_3d_perspective(m, center_screen_x, center_screen_y, 0, pixels_from_camera_to_screen_plane);

evas_object_map_set(obj, m); // set map for this object

evas_map_free(m); // free it – object will retain a reference and release when it is done

evas_object_map_enable_set(obj, EINA_TRUE); // enable the map that is set

● Many more ways to use maps to “map an object somewhere else”
● Is useful even for 2D rotations as well

Remember...

Remember...

● If it's hard – you're probably doing it wrong

Remember...

● If it's hard – you're probably doing it wrong
● Use the facilities provided to save time

Remember...

● If it's hard – you're probably doing it wrong
● Use the facilities provided to save time

– The higher level ones save more time

Remember...

● If it's hard – you're probably doing it wrong
● Use the facilities provided to save time

– The higher level ones save more time

● Ask questions to learn and make better code

Remember...

● If it's hard – you're probably doing it wrong
● Use the facilities provided to save time

– The higher level ones save more time

● Ask questions to learn and make better code
– Real humans are here and happy to talk to you

Links

● http://developer.tizen.org
– SDK, API Documentation and more

● http://www.enlightenment.org
– Upstream EFL API development project

● http://git.enlightenment.org/core/elementary.git/tree/data/themes
– Lots of sample EDC files for Edje (a complete theme within this tree of files)

● http://git.enlightenment.org/core/elementary.git/tree/src/bin
– Lots of sample code showing how to use lots of Elm APIs

● http://developer.tizen.org/forums
– Tizen developer forums for help and advice

● http://www.tizen.org/community/mailing-lists
– Mailing lists for Tizen development

● http://www.tizen.org/community/irc
– Internet Chat for Tizen

● https://www.enlightenment.org/contact
– IRC and E-Mail information for EFL upstream development

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276

