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HTML5

+ Re-use Web Tech knowledge

+ Share code across platforms

+ Develop apps quickly

+ Be hip & trendy

- Slow (startup and execute)

- Use more memory

- More restricted on Tizen

Native

+ Re-use C/C++ knowledge

+ Share code with large codebases

+ Fast (startup and execute)

+ Use less memory

+ Less restricted on Tizen

+ Grow an old-school UNIX beard

- More prone to programmer error

- Takes more time to develop

- Different APIs to other platforms
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Native

● Used by system developers for most apps
● Apps can be C or C++

– APIs to call in Tizen are C    (Can be called from C++ as well as C)

● Can use Tizen SDK or GBS to build
– GBS is a Linux command-line tool to cross-compile Tizen software

● Entire OS is built using GBS on servers

– SDK is Eclipse based
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Native API Content

● Majority of Native API comes from EFL
– Open Source Project – http://www.enlightenment.org
– Covers Main loop (UI), Rendering, OpenGL, Widgets, Comms, IPC, Threading, 

Theme, etc.

● Other Tizen Native APIs
– Multimedia, Messaging, Sensors, Alarm, Location, Lifecycle, Network, Security, 

Social, Telephony, etc.
– Other open source project APIs suported like cURL, libEXIF, libXML, Sqlite etc.
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Why Speak?

● Founded Enlightenment / EFL development
● Wrote the largest part of EFL code personally

– EFL is over 1,000,000 lines of C code

● Wrote the Window Manager / Compositor for Tizen
– Enlightenment is over 220,000 Lines of C code

● Have worked on Tizen since before 1.0
– 7+ years – before it was even Tizen
– Full-time Engineer at Samsung for 5+ Years

● So if you have Questions – Please Ask     I don't bite
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Tips to make your life easier

● Covering the EFL parts of Tizen…
● Show you some pointers to avoid mistakes
● “If it's hard, you're doing it wrong”

– There is often an easier way

● Ask for help if you get stuck or think you could do something better
– There are real humans willing to help
– Links at end of presentation
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Now … Creation of your UI
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Create a Window & Content

● Add a window
● Add a conformant (if you want to handle keyboard and indicator)
● Add more containers/content (Naviframe, Box, Table etc.)
● Add more content (Lists, Buttons, Labels etc.)
● Add callbacks to objects to listen to events
● Show window
● … Let main loop run and call callbacks



Now … Mainloop Interactions

Main LoopStart Exit
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app_create() app_terminate()

Create Window and 
Content here!

Delete Window and 
trigger shutdown

Process shutdown 
work

Process 
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Main Loop

Thread

Thread

Thread

UI Creation, Events,, Mainloop, 
Core Rendering, Async I/O

Data structure, I/O, Thread I/O handling, 
Prepare Data/Rendering before Display
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ecore_main_loop_thread_safe_call_async()
ecore_main_loop_thread_safe_call_sync()
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ecore_thread_main_loop_end()
ecore_thread_check()
ecore_thread_feedback()
ecore_thread_reschedule()
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ecore_pipe_wait()

Main Loop Only

elm_…
evas_…
edje_…
ecore_…
…
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ecore_thread_main_loop_begin(); { // Begin main loop code
  …
  timer = ecore_timer_add(42.0, my_timer_callback, NULL);
  evas_object_move(my_object, x, y);
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Call “Main Loop” Calls from Thread

…
ecore_thread_main_loop_begin(); { // Begin main loop code
  …
  timer = ecore_timer_add(42.0, my_timer_callback, NULL);
  evas_object_move(my_object, x, y);
  …
} ecore_thread_main_loop_end(); // End main loop code
…

or
…
void my_main_loop_code(void *data) { // Begin main loop code
  My_Data *my_data = data;
  …
  timer = ecore_timer_add(42.0, my_timer_callback, NULL);
  evas_object_move(my_data->obj, my_data->x, my_data->y);
  free(my_data);
  …
} // End main loop code
…

…
// Queue function to be called in the main loop
My_Data *my_data = calloc(1, sizeof(My_Data));
my_data->x = x;
my_data->y = y;
my_data->obj = my_object;
ecore_main_loop_thread_safe_call_async(my_main_loop_code, my_data);
…

Very simple & easy way to call rare bl.ocks of code 
within main loop context from a thread

Very efficent way to call code async very 
frequently from thread in main loop context
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Thread Worker Pool

● You can also use standard worker pool
– ecore_thread_new() adds a thread work item to the queue

● Keep work items short
● Pool of workers pull thread items off the queue and hand results back to mainloop
● Limited size of pool to avoid overloading CPU (pool size based on number of cores)
● Saves managing your own thread pool
● Simple to use for tasks easily divided up into N discrete small units

● See Tizen and Elementary docs for more threading usage examples
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Threading Summary

● Use threads, but design carefully
– Divide tasks into isolated work per thread

● Minimizes possible bugs by minimizing locking requirements
● Mainloop “collects results & implements display state”
● Use ecore thread infra to save re-inventing the wheel

● If you have issues, please report/bring them up!



Now … Back to the Window that is created

Main LoopStart Exit

Create Terminate

Main Loop

main()

ui_app_main()

ui_app_main()

app_create() app_terminate()

Create Window and 
Content here!

Delete Window and 
trigger shutdown

Process shutdown 
work

Process 
setup work
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Window Content

● The window is a full scene graph
– Everything you see is an object that persists
– Changes to all objects are stateful

● They retain their state as it was last set

– Rendering is “automatic” after going idle at next VSYNC event
● Hidden/abstracted so acceleration methods can be dramatically changed

VSYNC VSYNC VSYNC VSYNC VSYNC

WAKE WAKE WAKE WAKE WAKE WAKE WAKE

SLEEP SLEEP SLEEP SLEEP SLEEP SLEEP SLEEP

RENDER RENDER RENDER

GPU / RENDER THREAD

RENDER RENDER RENDER

MISSED VSYNC MISSED VSYNC
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Scene Graph

● Windows hold a tree of objects

● Each object can be a basic object 
or a container (Smart Object)
– All objects are stacked and have 

geometry (x, y, width & height)
– All child objects stack within the 

parent object (recursively)

● Basic objects
– Rectangle
– Image (images, buffers, proxies)
– Text (single line simple text)
– Textblock (multi-line formatted text)
– Textgrid (for grids of chars)
– Polygon (used for event regions)
– Line (really limited)
– VG (Vector Graphic)
– 3D
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Another List Item

Yet Another

Getting There

Almost done

Do This Go Away

Heading is HereList Item

List Item Next

Another List Item

Yet Another

Getting There

Almost done

Heading is Here

Go Away

Do This
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Queue deferred render

● All objects retain state
– Show object once – it stays visible UNTIL hidden
– Set a color of an object – it stays that color until it is changed
– Set text of text or textblock object – it shows that text until changed

● Rendering is automatic after VSYNC wakeup idle
– Tries to only re-render updated regions / objects

VSYNC VSYNC VSYNC VSYNC VSYNC

WAKE

SLEEP

RENDER

WAKE

SLEEP

Queue wakeup for rendering

Wake up and then immediately sleep
on entering idle begin rendering

Already queued
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Elementary Widgets

● All widgets (elm widgets) are just smart objects
– Provide extra behavior semantics

● Focus, accessibility, packing, child deletion, …

– Uses Edje to define some internal layout/look and animation
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Evas - OpenGL

● Use elm_glview widget for OpenGL
– Handles abstraction details of lower level Evas GL APIs
– Handles correctly switching from direct (zero-copy) or indirect rendering
– Handles calling your render function when rendering is needed
– Provides portability beyond OpenGL-ES based systems beyond Tizen

● Works on Desktop OpenGL too (Linux, OSX, SDL)
– Gives you an OpenGL-ES 1.1/2.0 API to use across all targets

–  You can have multiple GL Views in a window
● Even inside lists, scrollers
● Mixed with other standard widgets and objects that can be used for game HUD
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Containers & Scaling

● EFL loves containers
– You put a Conformant in a Window
– You put a Naviframe in a Conformant
– You add a Naviframe page
– You put a Table in the Naviframe page
– You put Entries in the Table
– You put Buttons in the Table
– You put and Icon in the Button

● If you use containers correctly, your UI can scale AND resize properly
– This is like HTML with <DIV> in a <DIV> in a <TABLE> in a …



Size Hinting

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0  0.0
Align 0.5  0.5

Weight 1.0  0.0
Align 0.5  0.5

Weight 1.0  1.0
Align 0.5  0.5

Weight 1.0  1.0
Align 1.0  -1

Weight 1.0  1.0
Align 0.0  1.0

Defaults

-1 = FILL



Size Hinting

● Parent Widget decides how to 
arrange children

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0  0.0
Align 0.5  0.5

Weight 1.0  0.0
Align 0.5  0.5

Weight 1.0  1.0
Align 0.5  0.5

Weight 1.0  1.0
Align 1.0  -1

Weight 1.0  1.0
Align 0.0  1.0

Defaults

-1 = FILL



Size Hinting

● Parent Widget decides how to 
arrange children
– Different parents have different 

rules

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0  0.0
Align 0.5  0.5

Weight 1.0  0.0
Align 0.5  0.5

Weight 1.0  1.0
Align 0.5  0.5

Weight 1.0  1.0
Align 1.0  -1

Weight 1.0  1.0
Align 0.0  1.0

Defaults

-1 = FILL



Size Hinting

● Parent Widget decides how to 
arrange children
– Different parents have different 

rules

● Object hints determine if a child fills 
an/or expands its allocated area

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0  0.0
Align 0.5  0.5

Weight 1.0  0.0
Align 0.5  0.5

Weight 1.0  1.0
Align 0.5  0.5

Weight 1.0  1.0
Align 1.0  -1

Weight 1.0  1.0
Align 0.0  1.0

Defaults

-1 = FILL



Size Hinting

● Parent Widget decides how to 
arrange children
– Different parents have different 

rules

● Object hints determine if a child fills 
an/or expands its allocated area
– Align and Weight do this

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0  0.0
Align 0.5  0.5

Weight 1.0  0.0
Align 0.5  0.5

Weight 1.0  1.0
Align 0.5  0.5

Weight 1.0  1.0
Align 1.0  -1

Weight 1.0  1.0
Align 0.0  1.0

Defaults

-1 = FILL



Size Hinting

● Parent Widget decides how to 
arrange children
– Different parents have different 

rules

● Object hints determine if a child fills 
an/or expands its allocated area
– Align and Weight do this
– Some widgets ONLY use Weight

Parent Box

Child

Space Alloc'd

Parent Box

Child Space Alloc'd

Parent Box

Child
Space Alloc'd

Parent Box
Space Alloc'd

Parent Box

Child

Space Alloc'd

Child

Weight 0.0  0.0
Align 0.5  0.5

Weight 1.0  0.0
Align 0.5  0.5

Weight 1.0  1.0
Align 0.5  0.5

Weight 1.0  1.0
Align 1.0  -1

Weight 1.0  1.0
Align 0.0  1.0

Defaults

-1 = FILL



Size Hinting

● Parent Widget decides how to 
arrange children
– Different parents have different 

rules

● Object hints determine if a child fills 
an/or expands its allocated area
– Align and Weight do this
– Some widgets ONLY use Weight
– Objects do NOT Fill and do NOT 

Expand by default
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Size Hinting

● Window, Conformant, Part content (Layouts and other widgets)
– Use only Weight

● Everything else uses both Weight and Align
● All elm widgets control their own min size EXCEPT

– Grids never calculate their own min size – you may control it
– GLview never calculates its own size

● Never set min (or max) size if already controlled by object
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Min Size Control Trick

● Make Elm Table
● Make Evas Rectangle (do not show it)
● Pack Rectangle at 0, 0, 1x1
● Create other widget you want to control min size of
● Pack other widget in same Table at 0, 0, 1x1
● Set min size desired on Rectangle
● This gives a second control point (Rectangle object) to set hints on.

Table

Rectangle

Other Widget
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Manual Positioning

● You can manually move/resize widgets and objects, BUT…
– Increases the work to handle multiple orientations, resolutions etc.
– This should be RARE
– If you do, YOU are in charge of layout handling, scaling, window resizes etc.

● This dramatically increases YOUR workload

– Should only be needed for very specific cases when special results are needed
– Creates issues for Accessibility and Focus Movement

● You may have to manage a Focus chain by hand if you do this

● This can be useful for effects or unusual UIs
● Not recommended unless you enjoy … The way of PAIN
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Evas/Elm Object Lifecycle

● After objects are created (added)
– Can listen for deletion:

void func_to_call_on_del(void *data, Evas *e, Evas_Object *obj, void *info) {

  printf(“object %p deleted, data is %p\n”, obj, data);

}

evas_object_vevent_callback_add(obj, EVAS_CALLBACK_DEL, func_to_call_on_del, data_pointer_for_func);

● You can attach key  pointer values to any object→
evas_object_data_set(obj, “mykey”, mypointer);

evas_object_data_del(obj, “mykey”);

mypointer = evas_object_data_get(obj, “mykey”);

● Can be used for extending an object - Poor-mans-objects
– Set/get extra data to store/access
– On delete, delete any data needing deletion
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Other Events

● Can also listen to many other events on objects:
…

EVAS_CALLBACK_DEL

EVAS_CALLBACK_SHOW

EVAS_CALLBACK_HIDE

EVAS_CALLBACK_MOVE

EVAS_CALLBACK_RESIZE

EVAS_CALLBACK_RESTACK

EVAS_CALLBACK_CHANGED_SIZE_HINTS

EVAS_CALLBACK_IMAGE_PRELOADED

…



Dynamic Image Content



Dynamic Image Content

● You can modify pixel data of an Image



Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);



Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

– Each update after that, get data, modify, set data, add update:
unsigned int *pixels = evas_object_image_data_get(obj, EINA_TRUE);

int stride = evas_obj_image_stride_get(obj);

// modify “pixels” with each row of pixels being “stride” bytes

evas_object_image_data_set(obj, pixels);

evas_object_image_update_add(obj, 0, 0, 600, 400);



Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

– Each update after that, get data, modify, set data, add update:
unsigned int *pixels = evas_object_image_data_get(obj, EINA_TRUE);

int stride = evas_obj_image_stride_get(obj);

// modify “pixels” with each row of pixels being “stride” bytes

evas_object_image_data_set(obj, pixels);

evas_object_image_update_add(obj, 0, 0, 600, 400);

● ALWAYS GET THEN SET. Not doing so will lead to bugs



Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

– Each update after that, get data, modify, set data, add update:
unsigned int *pixels = evas_object_image_data_get(obj, EINA_TRUE);

int stride = evas_obj_image_stride_get(obj);

// modify “pixels” with each row of pixels being “stride” bytes

evas_object_image_data_set(obj, pixels);

evas_object_image_update_add(obj, 0, 0, 600, 400);

● ALWAYS GET THEN SET. Not doing so will lead to bugs

– If you modify pixel data OFTEN then you should do this before setting size above



Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

– Each update after that, get data, modify, set data, add update:
unsigned int *pixels = evas_object_image_data_get(obj, EINA_TRUE);

int stride = evas_obj_image_stride_get(obj);

// modify “pixels” with each row of pixels being “stride” bytes

evas_object_image_data_set(obj, pixels);

evas_object_image_update_add(obj, 0, 0, 600, 400);

● ALWAYS GET THEN SET. Not doing so will lead to bugs

– If you modify pixel data OFTEN then you should do this before setting size above
● evas_obj_image_content_hint_set(obj, EVAS_IMAGE_CONTENT_HINT_DYNAMIC)



Dynamic Image Content

● You can modify pixel data of an Image
– Suggested always first set alpha, set size, then handle updates after that:

evas_object_image_alpha_set(obj, EINA_TRUE);

evas_object_image_size_set(obj, 600, 400);

– Each update after that, get data, modify, set data, add update:
unsigned int *pixels = evas_object_image_data_get(obj, EINA_TRUE);

int stride = evas_obj_image_stride_get(obj);

// modify “pixels” with each row of pixels being “stride” bytes

evas_object_image_data_set(obj, pixels);

evas_object_image_update_add(obj, 0, 0, 600, 400);

● ALWAYS GET THEN SET. Not doing so will lead to bugs

– If you modify pixel data OFTEN then you should do this before setting size above
● evas_obj_image_content_hint_set(obj, EVAS_IMAGE_CONTENT_HINT_DYNAMIC)

● This will try and use zero-copy for textures with OpenGL, SW is always zero-copy
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Dynamic Image Content

● Pixels by default are ARGB8888 premultiplied Alpha
–  Alpha as MSB, Blue LSB per 32bit “integer” word

A = (pixel >> 24) & 0xff

R = (pixel >> 16) & 0xff

G = (pixel >> 8) & 0xff

B = pixel & 0xff

– Premultiplied Alpha is where R, G and B are multipled by A
R = R * A; // conceptually if RGBA are 0.0 to 1.0

G = G * A; // conceptually if RGBA are 0.0 to 1.0

B = B * A; // conceptually if RGBA are 0.0 to 1.0

– Premultiplied Alpha produces correct results when scaling unlike non-premul
– Premultiplied Alpha is faster in software rendering
– Premultiplied Alpha always produces correct destination buffer Alpha
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● More objects cost more overhead
– All objects have to be walked to look for changes at render
– All objects have to be walked to render them (and clip them)
– Objects cost memory

● So … keep number of objects down where possible
– Widgets like Elm Genlist and Gengrid do this for you for all Items

● An Item is a very minimal piece of data acting as placeholder for an item

– Do not abuse Genlist and Gengrid for generic scrollable UIs
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“Infinite Scrolling” Trick

● Add a Scroller
– Add a Box or Table
– Set content of Scroller to Box/Table

● Divide Table or Box into 3 regions
– Above
– Visible
– Below

● Track geometry of “dummy 
rectangles” in Above/Below
– Replace/insert as needed
– Adjust min size of above/below

Above

Below

Visible

Canvas
Viewport

Listen to MOVE and RESIZE 
callbacks on “invisible rectangle”

Listen to MOVE and RESIZE 
callbacks on “visible” object(s)

Listen to MOVE and RESIZE 
callbacks on “invisible rectangle”

Listen to VIEWPORT_RESIZE 
callbacks on Evas Canvas 

Object

0,0 width x  height
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“Infinite Scrolling” Trick

● The less content you create when the region becomes visible
– The smoother things will be

● Remember to delete content as it exits the viewport too
● Remember to track viewport changes

– Windows in Tizen CAN RESIZE
● It is a multi-windowed system without fixed sizes, just like a desktop UI

● Consider loading content data (text labels, other I/O) in threads
– Queue/begin this thread worker when visiblity happens
– Create widgets with “dummy” content (eg blank labels)
– Fill text/content once thread is done
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Widget Styles

● All widgets support styles except
– Box, Table, Grid

● Styles allow custiomizing of widget look
● You can make new custom styles of your own
● Themes are in EDJ Files (Edje collections of groups)
● Custom styles are generally a bad idea because application will not fit in
● Use extensions instead of overlays

– Add new styles instead of override



Theme Style Lookup

Group2 Group4 Group5

Group1 Group2 Group4

Group1 Group2 Group3

Group4 Group5

Overlay Theme

System Theme

Default Theme

Extension Theme

Lookup for Group1 Lookup for Group2Lookup for Group1 Lookup for Group3 Lookup for Group4 Lookup for Group5
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Edje – Graphical Blobs

● What Edje is
– Designed as an “overgrown PSD file”

● Multiple layers
● Layers can move/resize/show/hide/change color & transparency
● Layers can point to image data to use, be text or rectangles
● The stored states of layers can be changed in response to signals (e.g from events or app)
● State changes can animate by interpolating between states

● What Edje is NOT
– An application UI design system
– A widget layout system
– A chicken



EDC

collections {
  images {
    image: "icon.png" LOSSY 80; // encode icon.png with lossy 80% quality
  }
  group { name: "my/group"; // name of this group int he collections
    parts {
      part { name: "base"; type: RECT; // a "base" part that is a rect
        description { state: "default" 0.0; // the default state
          color: 255 128 0 255; // orange
        }
        description { state: "active" 0.0; // an active state
          color: 255 255 0 255; // yellow
        }
      }
      part { name: "icon"; // icon part - default type is image
        description { state: "default" 0.0; // the default state
          rel2.relative: 0.5 1.0; // rel2 (bottom right) relative to middle
          image.normal: "icon.png";
        }
      }
      part { name: "label"; type: TEXT; // label part
        description { state: "default" 0.0; // the default state
          rel1.to: "icon"; // top-left relative to the icon
          rel1.relative: 1.0 0.0; // relative to top-right of icon
          color: 255 255 255 255; // white
          text.font: "Sans"; text.size: 10; // 10 px Sans font
          text.text: "Hello"; // text content to show
        }
        description { state: "active" 0.0; // an active state
          inherit: "default" 0.0; // copy state from default then modify
          color: 0 0 0 255; // black
          text.text: "Clicked"; // a new text label
        }
      }
    }

    programs {
      program { // when mouse button 1 is down on label
        signal: "mouse,down,1"; source: "label";
        action: STATE_SET "active" 0.0; // set state to active
        transition: SINUSOIDAL 0.5; // over 0.5 sec with sinusoidal interp
        target: "label"; // do it to label
        target: "base"; // do it to base
      }
      program { // when mouse button 1 is released on label
        signal: "mouse,up,1"; source: "label";
        action: STATE_SET "default" 0.0; // set state to default
        transition: SINUSOIDAL 1.0; // over 1 sec with sinusoidal interp
        target: "label"; // do it to label
        target: "base"; // do it to base
      }
    }
  }
}

Layer

Layer

Layer
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Edje – Graphical Blobs

● Edje has been extended over many years
● Recently tools like Enventor (ships with Tizen 2.4 SDK) give you a GUI 

editing tool
– Gives you rapid feedback on your changes to save a lot of time and effort
– Eflete is even better and is almost pure-GUI EDJE file editing

● Coming in future – you can download source from git.enlightenment.org

● EDC files go through CPP so you can use #include, #define, #ifdef etc.



EDC

#define IMAGE(x) images.image: x LOSSY 80
#define DEF “default” 0.0
#define ACT “active” 0.0
#define TRANS(x) SINUSOIDAL x
#define TARGETS target: “label”; target: “base”
#define SIGSRC(x, y) signal: x; source: x
collections {
  IMAGE(“icon.png”);
  group { name: "my/group";
    parts {
      part { name: "base"; type: RECT; // a "base" part that is a rect
        description { state: DEF;
          color: 255 128 0 255; // orange
        }
        description { state: ACT; // an active state
          color: 255 255 0 255; // yellow
        }
      }
      part { name: "icon"; // icon part - default type is image
        description { state: DEF;
          rel2.relative: 0.5 1.0; // rel2 (bottom right) relative to middle
          image.normal: "icon.png";
        }
      }
      part { name: "label"; type: TEXT; // label part
        description { state: "default" 0.0; // the default state
          rel1.to: "icon"; // top-left relative to the icon
          rel1.relative: 1.0 0.0; // relative to top-right of icon
          color: 255 255 255 255; // white
          text.font: "Sans"; text.size: 10; // 10 px Sans font
          text.text: "Hello"; // text content to show
        }
        description { state: ACT; // an active state
          inherit: "default" 0.0; // copy state from default then modify
          color: 0 0 0 255; // black
          text.text: "Clicked"; // a new text label
        }
      }
    }

    programs {
      program { SIGSRC(“mouse,down,1”, “label”);
        action: STATE_SET ACT; // set state to active
        transition: TRANS(0.5); // over 0.5 sec with sinusoidal interp
        TARGETS;
      }
      program { SIGSRC(“mouse,up,1”, “label”);
        action: STATE_SET DEF; // set state to default
        transition: TRANS(1.0);
        TARGETS;
      }
    }
  }
}



Last - 3D Effects

You don't need OpenGL
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2.5D Mapping

Evas_Map *m = evas_map_new(4); // new 4 point map – only 4 points are actually guaranteed to work

evas_map_util_points_populate_from_object(m, obj); // fill map points from current object geometry

evas_map_util_3d_rotate(m, 30.0, 20.0, 10.0, center_x, center_y, 0); // rotate map around a center point

evas_map_util_3d_perspective(m, center_screen_x, center_screen_y, 0, pixels_from_camera_to_screen_plane);

evas_object_map_set(obj, m); // set map for this object

evas_map_free(m); // free it – object will retain a reference and release when it is done

evas_object_map_enable_set(obj, EINA_TRUE); // enable the map that is set
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2.5D Mapping

Evas_Map *m = evas_map_new(4); // new 4 point map – only 4 points are actually guaranteed to work

evas_map_util_points_populate_from_object(m, obj); // fill map points from current object geometry

evas_map_util_3d_rotate(m, 30.0, 20.0, 10.0, center_x, center_y, 0); // rotate map around a center point

evas_map_util_3d_perspective(m, center_screen_x, center_screen_y, 0, pixels_from_camera_to_screen_plane);

evas_object_map_set(obj, m); // set map for this object

evas_map_free(m); // free it – object will retain a reference and release when it is done

evas_object_map_enable_set(obj, EINA_TRUE); // enable the map that is set

● Many more ways to use maps to “map an object somewhere else”
● Is useful even for 2D rotations as well
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Remember...

● If it's hard – you're probably doing it wrong
● Use the facilities provided to save time

– The higher level ones save more time

● Ask questions to learn and make better code
– Real humans are here and happy to talk to you



Links

● http://developer.tizen.org
– SDK, API Documentation and more

● http://www.enlightenment.org
– Upstream EFL API development project

● http://git.enlightenment.org/core/elementary.git/tree/data/themes
– Lots of sample EDC files for Edje (a complete theme within this tree of files)

● http://git.enlightenment.org/core/elementary.git/tree/src/bin
– Lots of sample code showing how to use lots of Elm APIs

● http://developer.tizen.org/forums
– Tizen developer forums for help and advice

● http://www.tizen.org/community/mailing-lists
– Mailing lists for Tizen development

● http://www.tizen.org/community/irc
– Internet Chat for Tizen

● https://www.enlightenment.org/contact
– IRC and E-Mail information for EFL upstream development
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