Evaluating effects of memory compressed usage on MeeGo

LinuxCon Europe 2011 Anderson Briglia anderson.briglia@indt.org.br

INSTITUTO NOKIA DE TECNOLOGIA INdT

Independent and non-profit Research and Development Institute, founded by Nokia and focused on the generation of new concepts, products and solutions for areas related to mobile technologies and the internet.

INdT Streams:

- SW & UI
- Network Technologies
- Manufacturing(logistics)
- Service experience

- Motivation
- Related work
- Compcache: some details about the project
- Experiments using N9 and N900 + MeeGo
- Final considerations

Why compressed memory?

• Generally, memory is scarce.

• Hardware changes bring more co\$ts.

- A software solution can relief the memory scarcity.
- Flash storage suffers from wear-leveling issues, so its useful if we can avoid using them as swap device.

Related work

- 1993 Douglis with first comp. cache implementation.
- 1999 Kaplan with new adaptive scheme.
- Following the same scheme, Rodrigo Castro released an implementation with new compressed storage structures approach and new adaptive re-sizing approach. It was for 2.4.x Linux kernel.
- CRAMES Compressed RAM for Embedded Systems.

Previous version

- Changes to the swap write path, page fault handler and page cache lookup functions.
- Intrusive nature.

Ramzswap module

- RAM based block device used as swap disk.
- Swapped pages are compressed and stored in memory itself.
- Requested pages are decompressed before swapped-out.

Implementation design

- Far less intrusive than previous approach.
- Do not compress page cache (filesystem backed) pages.
- Compress anonymous pages only.
- Individual components:
 - LZO compressor.
 - xvMalloc memory allocator.
 - compcache block device driver: ramzswap.
- swapon /dev/ramzswap0

Memory management

- How manage the variable size of the compressed chunks?
- How reduce the fragmentation?

Memory management

- xvMalloc: O(1) malloc/free.
- Very low fragmentation as presented on all tests.
- Can use highmem.
- Non-standard allocator interface.

- Limitations
 - ramzswap can never know when a compressed page is no longer required.
 - Swap discard mechanism: BIO_RW_DISCARD
 - If there is no swap operations the stale pages will remain.
 - ramzswap can simply forward uncompressible pages to a backing swap disk, but it cannot swap out memory allocated by xvmalloc.

Test platforms

- N9 + Harmattan
 - has ramzswap as default swap device: ~ 256 MB
 - Swappiness = 30
 - RAM 1GB
- N900 running MeeGo by Community

 has MMC block device as default swap device: ~ 75 MB
 RAM 256 MB
- Tests consists in memory allocation speed (fillmem, scan utilities), and low memory situations: multiple applications running.

Compressed Cache Experiments

- Is ramzswap overhead affecting memory allocation speed?
- Is ramzswap enabling other use cases when memory consumption is critical?

- Performance tests
 - Memory allocation speed
- Memory consumption
 - Memory behavior when applications are running and ramzswap is being used or not

Performance test

Time to allocate 550 MB

Compressed memory after 550 MB allocated

Memory consumption behavior

- 8 browsers instances
- Calendar
- Video player
- Music player

Memory consumption behavior

Ramzswap memory consumption stats

Default configuration

DiskSize:	262144 kB
NumReads:	648
NumWrites:	2183
FailedReads:	0
FailedWrites:	0
InvalidIO:	0
NotifyFree:	0
ZeroPages:	68
GoodCompress:	87 %
NoCompress:	1 %
PagesStored:	2115
PagesUsed:	502
OrigDataSize:	8460 kB
ComprDataSize:	1979 kB
MemUsedTotal:	2008 kB

Swappiness = 60

DiskSize:	262144 kB
NumReads:	897
NumWrites:	10576
FailedReads:	0
FailedWrites:	0
InvalidIO:	0
NotifyFree:	0
ZeroPages:	419
GoodCompress:	76 %
NoCompress:	5 %
PagesStored:	10157
PagesUsed:	3206
OrigDataSize:	40628 kB
ComprDataSize:	12682 kB
MemUsedTotal:	12824 kB

Ramzswap memory consumption stats

Default configuration

DiskSize:	262144 kB
NumReads :	648
NumWrites:	2183
FailedReads:	0
FailedWrites:	0
InvalidIO:	0
NotifyFree:	0
ZeroPages:	68
GoodCompress:	87 %
NoCompress:	1 %
PagesStored:	2115
PagesUsed:	502
OrigDataSize:	8460 kB
ComprDataSize:	1979 kB
MemUsedTotal:	2008 kB

Swappiness = 60

DiskSize:	262144 kB
NumReads:	897
NumWrites:	10576
FailedReads:	0
FailedWrites:	0
InvalidIO:	0
NotifyFree:	0
ZeroPages:	419
GoodCompress:	76 %
NoCompress:	5 %
PagesStored:	10157
PagesUsed:	3206
OrigDataSize:	40628 kB
ComprDataSize:	12682 kB
MemUsedTotal:	12824 kB

Some conclusions

- Memory consumption
 - Default configuration
 - Good responsiveness but the video did not play.
 - No swap
 - After the six browser instance the responsiveness was decreasing and the video player did not start.
 - With ramzswap
 - Responsiveness ok, all applications started and worked properly.

- Performance tests
 - Memory allocation speed
- Memory consumption

 Memory behavior when applications are running and ramzswap is being used or not

Performance: Time to allocate 90 MB

Nokia Technology Institute

Performance tests

- Time to allocate 90 MB
 - System was able to allocate 90 MB bunch of memory in three different swap configurations.
 - Swappiness = 60 and ramzswap size = 15% of total memory seems to be the best choice.

Memory consumption behavior

- 8 browsers instances
- Video player
- Photo gallery

Memory consumption behavior

Results

- Memory consumption
 - Default configuration
 - No responsiveness after video play, not possible to finish the test.
 - With ramzswap (swappiness = 30 or 60)
 - No possible to finish the test as well. The device rebooted.
 - Ramzswap + real swap (mmc blk device)
 - Best choice.
 - Ramzswap was configured to have higher priority. MMC blk device as second swap area.

Final considerations

- As presented, memory compressing is an alternative for embedded and memory limited devices.
- The newer Compressed Cache version (using ramzswap), is pretty mature and had abandoned the intrusive nature from previous version.

Final considerations

- N9 experiments showed that the best choice is to combine the fs back storage swap and the ramzswap. Its default configuration already set this.
- The default value for swappiness on N9 is 30. Maybe we should review this since we could have more pages going earlier to compressed memory, increasing the performance.

Final considerations

- N900 experiments showed that the ramzswap usage could bring more benefits than the current configuration.
- Before ramzswap load, we need do configure the amount of memory used since it is not a good idea to have big ramzswap partitions.

Presentation resources

- Compcache project website: http://code.google.com/p/compcache
- LWN.net article about in-memory compressed swapping: http://lwn.net/Articles/334649/
- Documentation about Virtual Memory Management on kernel.

Thanks

anderson.briglia@indt.org.br anderson.briglia@openbossa.org

Nokia Technology Institute